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Regular Surfaces

Question: What 1s the condition for a curve to be regular?

Definition 12.1;:

A regular parametric representation of class C(k), fork > 1,
of a set of points W in R’ is a mapping f: U—W, where U is
an open set in R” and f is on W, and: Of Of

X
ou, ou,

= 0.
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Example 12.2

For f : R2—>R, a scalar valued bivariate function, let
f(X) = (X;, X5, (X)), X=(X;, X,). If f is C(k), sois f.

Note thatﬂ — [1,0,afj and o = EO,I,afj.

OX, OX,
Then, of 5 of _| _ o _ of 1 , which can never
OX, OX, X,  OX,

. NG
result in the zero vector. Hence, an explicit c'" surface

OX, OX,

b

can always be represented as a regular parametric

representation.
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Example 12.4

ConsiderU={u:||lull[<1} with

f :(ul,u2,\/1—(u1)2 —(uz)z).

This 1s a regular parametric representation. Why?

Question: What 1s this surface?
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Theorem 12.5

Y
Letf: R°—>R. Fora= (a,, @,) in the domain of f, define

SAx|x-al<r}. Assume f is ™", on Car
Then, forx e C,,and &, = (5, ,5, ) = (X;-8;, X,-2, ),

f(X)= 21£51ﬂ+5 ﬂj f(@)+R,,,

i ! OX, OX

where

b
5 i_|_§ i
ax ax -
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Theorem 12.5 (Cont.)

and,

0

1 n+1
1-t)"( . o
R = o,—+o,— | f(a +ot,a +o,t)dt,
a,n _(‘; n! laxl 2 @X2 ( | | ) 2 )

n+1
= T : Dy (51 ;+52 ;j f(a, +90,0,a,+0,0),
+1)! X X,

where & 1is a certain value between zero and one.
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F(u(v)) = 1(u;(vy, V,), Uy (Vy, V)
Allowable Change of Parameter

Question: What are the condition for u(t) mn C(u(t)) to be
an allowable change of parameter of regular curve C(U)?

Consider the surface f(u(Vv)), where f is a regular surface,

of of L@f ou,  of auzj{af ou, , of auzj

oV, ) ov, \ou, ov, au, ov, ou, ov, ou, ov,
of y of ou, ou, . of y of ou, ou,

ou, ou, ov, ov, ou, 0ou, ov, oV,

of y of ou, ou, N of y of ou, ou,
ou, ou, ov, ov, Ou, Ou, oV, oV,
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Allowable Change of Parameter

8fxaf _8f of ou, ou, +8f Xaf ou, o,
ov, ov, Oou, au ov, ov, ou, ou, ov, oV,
of 8f ou, ou, of y of ou, ou,

ou, au ov, oV, aul ou, ov, ov,

_of y of (du, du, au, oy,
ou, ou,\ ov, ov, oV, ov,
of af o(u,,u,)

ou, 8u o(V,,V,)
Hence, we must require for the Jacobian to be non zero.
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Definition 12.9

k) . . .
A cY simple surface, also known as a coordinate patch, 1s

a regular parametric representation that 1s one-to-one

function.
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Example 12.10

Consider planar regular curve (x,(t), 0, X;(t)) with x,(t) > 0.

Define f(t,0)= (x,(t) cos(), x,(t) sin(d), X;(t)) where
(t,0) €e R xR,.
The surface T is called a surface of revolution.

ﬂ alcos& alsmé’ % j

ot ot ot
— X, sin 6, X, c0s8,0)
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Lcos@,—Lsin 0,
ot

OX, OX, j

Example 12.10 (Cont.)

Y
or of of [ OX, OX, OX, oX,

X, — cos 0, —X, —.sin 0, X —Lcos 6’+X —Lsin*@
ot ot ot ot

( X, aicos&’ —X, aismé’ X @Xj

X
ot 00

ot ot ot

and |of of \/(XI)Z(@%)Z cos2<9+(x1)2(ax3j2 sjn29+(x1)2(

ot 89 ot ot

(%) () )

Question: What is the angle between — and— ?
ot 00
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L cosd, alsm@ s j
ot

Example 12.10 (Cont.)

But (x,(f), 0, X5(t)) 1s a regular curve with x,(t) = 0. Hence,

of of ox, ) (ox Y
=X || —| +|—1| >0.
ot 00 ot ot

and f is a simple surface. Furthermore,

cf ,@f — X, @lsm 0 cosf+ X alsm Qcosﬁj 0,
ot 06 ot ot

or the partials are orthogonal.
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Lemma 12.19

If f is a coordinate patch, then

‘of of of of
X

ou, ou, ou, ou,
forms a basis for R”.

Proof: Follows immediately from the independence

of these three vectors.
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Tangent to Surfaces (Section 12.2)

-
Consider y(t) = f (u,(t), u,(t)) where f 1s a regular surface

and (U, (t), u,(t)) 1s a regular planar curve. By the chain
rule, of of ou, of ou,
- +

ot ou ot ou, ot

Because T is a regular surface, T 0508 soand T so.
ou, ou, ou, ou,
Further, since (U, (t), U,(t)) is a regular curve,(aul ,@Uzji (0,0).
ot ot
Thus, df /dt = 0 for all t values and y(t) is a regular curve.
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Definition 12.21

The vector space of the tangent plane T; , to a simple

surface f:U —>R’ ata point T (a) is the plane spanned by

{ o of }at a. Thus, this plane 1s the plane through the

ou,  ou,
origin with normal vector of X or
ou, ou,

The tangent plane of T at f(a) is the plane through the

point T (a) with normal vector o

ou, ou, |
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Directional Derivative

For a given direction X = (X, X,), consider

(U,(t), us(t)) = (a,+t x;, a,+t x,). We already know
that this 1s a regular curve, and hence, for a simple
surface f, T (u,(t), u,(1)) is a regular curve with

derivative

of of
— X1 -
ot ou,
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Lemma 12.22

The directional derivative

of a simple surface f in the

direction X = (X, X,), at the

pomta=(a,, a,), 1s,
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Lemma 12.24

A vector t 1s 1n the vector
space of the tangent plane of
the simple surface f at f(a) if
and only 1f 1t 1s a tangent
vector of some regular curve
f(y (1)) in surface T at the
point T (a).
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Definition 12.25

The unit normal to the
regular surface f at f (a)
1S
of of
X
ou, ou,
of of |
X
ou, ou,
Corollary 12.26: the dimension

1=

of the vector space of the tangent plane 1s two.
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First Fundamental Form (Section 12.3)

Consider y(t) =1 (u,(t), u,(t)), an arbitrary regular

curve in the simple surface f. Recall that the arc

t
length between t = a and t = t equals I |d7/ (7) dr.
| dr
We also know that the rate of change of the arc length

is [dy(t)
dt ||
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y (O =1 (1), uy,(D)
First Fundamental Form (Cont.)

dt =~ dt

Hence (dsj
dt

<d7ﬂ) d7&)>

Z@f du, Zaf du,
= ou; dt 4 8uj dt
Yy T
8u 8u dt
_Zz du, _{du1 duz}G[du1 duz}T
Uit | dt dt * dt
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First Fundamental Form (Cont.)

where g; = <§; ,;j > and G = (0y).
i J

By symmetry properties of inner products, g,,=
The above quadratic form can be expanded to,

2
] ) e ol
dt dt dt dt dt

g A j +(EG-F )(d”
dt - dt dt

where E = g, - = g, and G = g,
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First Fundamental Form (Cont.)

The quantity of EG -F ®is just det(G) = |G|.

Question: When is a quadratic form called positive
definite?

Because the arc length is a strictly increasing function
for all regular curves, this quadratic form must be
positive. E> 0 and G > 0 (why?) and further

EG -F° = det(G) = |G| > 0.
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Definition 12.28

The quantity

2
E(%j 4oF 2 AU, +G(d” j

dt dt dt dt

1s called the first fundamental form and 1s frequently

denoted by (du duj
dt  dt
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f :(ul,uz,\/l—(ul)2 —(u,)’ j

Example 12.29

Using the simple surface of Example 12.4

of
— )= sy
A0
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Example 12.29 (Cont.)

1-(u,)’

- U,
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Example 12.30

For f (U) = (u; + U,, U,U,, U, - U,),
of of
— = l,u ,1 and - — lau 9_1°
aul ( 2 ) auz ( 1 )
of of
X
ou, ou,

which can never be zero. Then,

:(_ul —U,,2,U, _uz)a

=Uuu, g :2-|—(U1)2.

22

g =2+(,)’ ¢
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Invariance of the First Fundamental
Form

Suppose that U = U(V) 1s a coordinate transformation

and that T (u) 1s a simple surface. h(v) = f(U(Vv)) is another
regular parametric representation of the same surface.
Let h(v(t)) be the curve f (u(t)) in the v parameterization.
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Invariance of the First Fundamental
Form (Cont.)

-
Consider the elements of G, the matrix of the first

fundamental form for h,

g (oh anl iaf ou, iaf ou,

P \ov, ov,  ou, ov;, = ou, ov,
of ou, of ou \ < Zzl of of \ou, ou,
ou, oV, 8u OV o o \ou, ﬁu OV, OV,

- T
ou, ou, {au1 auz}G ou, ou,

oV, ov, | ov, oV,
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Invariance of the First Fundamental
Form (Cont.)

In general, (G* — J (U)G (JV(U))T

where, _% %_
| ov, ov,
WS o, |
OV, OV, |

Thus, 1n general, the coefficients of the first fundamental

form are not invariant under coordinate transformation.
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Invariance of the First Fundamental
Form (Cont.)

Now consider (dsh/dt)z,

&)
dt

_ <6h(v<t>) 8h(v<t>)>

ot ot

"oV, OV, | G{@v1 ov, T

ot ot | | ot ot

_@Vl @Vz—\] (U)GJ (U)Tl:&vl 5V2:|T
ot ot | ’ ot ot |
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Invariance of the First

Fundamental Form (Cont.) e

ot ot ot~ ot

But {avl 8v2}] (u):{ﬁul 8u2}

and so, (dshjz {aul auQ}G{aul auQ}T
dt ot~ ot ot ot |
Theorem 12.31: The first fundamental form is

invariant under coordinate transformation.
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Angles Between Tangent Vectors

Consider the two tangent vectors o and ﬂ

ou, ou,
Question: Are these two tangent vectors orthogonal?

If't! and t* are two tangent vectors in T, at U, then

 Of tli
ou, 8u

R EH i
ou, ~ du,

one can write, t! =t —
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Angles Between Tangent Vectors
(Cont.)

In order to measure the angle between t' and t°,

consider their inner product,

) Txe( 2
=D D titjg; = .ol
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Angles Between Tangent Vectors
(Cont.)

Let the angle between t' and t> be ¢. Then,

<t1,t2> sz:tiltjzgij
el S5, [Exete,

cos @ =
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Lemma 12.32

The unnormalized vector ot X ot to the simple

ou, ou,

surface T at U has magnitude

of of
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Lemma 12.33

The first partial derivatives of surface T at U are
orthogonal if and only if g , = 0. The i’th partial
has unit length it and only 1t g.. = 1.

Prootf:

ou, ou,

<af af> of ||| of
= cosd.

ou, || ou,

where 01s the angle between the partials.
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Surface Area

Consider surface T at f (a) and let du, and du, be small

iy 1
positive real numbers. Assume fe c"”. For small

enough du, and du,,

idul ~ f(ul -|—O|U1,U2)— f(ulauz)
ou,

and

iduz ~ f(Ul,Uz +dU2)— f(unuz)-
ou,
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Surface Area (Cont.)

Now consider a surface area element bounded by
[U;, uy+du;]x[u, , uy+dus,].
These four surface points

can be approximated using,

/
f(u19u2)9 f(U1,U2)+§—JdU1,

|
of of of
f(u,u,)+—du,, f(u,.u,)+—du, +——du,.

X"owun/A"N/n © Gershon Elber, Technion




Surface Area (Cont.)

idu1 ><idu2
ou, ou,

of of

X
ou, au,

or by integrating and taking

the limat,

Area = ”\/@duld%.

© Gershon Elber, Technion

X"own/A"x/n

The area of this parallelogram 1s just

du,du, = \/@dulduz.

f (U sb+du,)




Second Fundamental Form (Section 12.4)

-
We will now consider the second order geometry of all

curves in the surface. Consider ¥ (s) =T (U,(S), U,(S)), ¥ 1s
the assumed parameterized arc length,

with s as the arc length parameter.

Denote by T, the unit tangent

vector of ¥(S), by N and B, the

unit normal and binormal vector

of 7(s), and by x andz, the

curvature and torsion of ¥ (S).
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Second Fundamental Form (Cont.)

-
of AU~ eI

We already know that T = '(s5) = E .
4 a ou, ds ou, ds

Differentiating T to find the

curvature vector x\:

— OuU. ds

_zd of dui+28f d’u
~dsou ds 4ou ds®
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) of du of d°u.
77(8)= st@u ds Z&ui ds®

Second Fundamental Form (Cont.)

B
where d of 0 oOf du o of du,
ds ou. :8u1 ou. ds 8u ou. ds
0’ f du o’f du,
_8uiaul ds au ou, ds
o f du,
z@u ou, ds

o*f du; du, of d*u.
or »''(s L =V(S)+t(S).
77(8)= ZZ@U ou, ds ds Zaui ds’ (5)+16)
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Second Fundamental Form (Cont.)

Recall that »(S) =« N or the curvature vector of y(S)
has components in the direction of the tangent plane
t(s) and some other direction, V(S). 7 (s) =t (u(s))

Definition 12.34

For a curve ¥ in the surface T,
the intrinsic normal to the curve

at a point on the curve 1s S=n xT.
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Example 12.35

Consider curve, 7(S) = (\15 cos(sﬁ ),\lﬁsin (S\/E ),

on hemisphere, f(u) = (ul,u2,\/1—(u1)2 —(u,)? )

Then,
y'(S)=T = (— smn (Sﬁ), cos(sﬁ),Ol
y'"'(s)=T'=xN = (— \Ecos(sﬁ)—ﬁ sin (3\5),0)

or N = (- cos(sv2|-sin(sv2)0) and x =42,
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Example 12.35 (Cont.)

Differentiating f(U), 8f [1 \/ —
[=(u)* —(u,)

and 8f [ —U2
V=) =(u,)’

The surface normal 1s n = (ul,u2,\/1—(u1)2 —(U2)2

X"owun/A"N/n © Gershon Elber, Technion




Second Fundamental Form (Cont.)

Because S =n xT, (S, n,T) forms an orthonormal
system and one can write

7/”(5) _ <]/”,T>T

+<7/", S>S +<y",n>n.

Because

(7"'(5),T)=(xN,T) =0,

we have,

7'"'(S) :<7/", S>S +<y",n>n.
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Definition 12.36

For an arc length regular parameterized curve #(S) in
the simple surface f, denote by

* x,(S)=(y"(s), n), the portion of the curvature vector
of ¥(S) 1n the direction of the surface normal, called
the normal curvature of y(S).

K,(S) = (¥(S), S), the portion of the curvature vector

of ¥(S) 1n the direction of the curve’ intrinsic normal,
called the geodesic curvature of y(S).
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o’ f du; du, of d’u, |
"(s) = L+ L=V(S)+1(S).
7" ) Zjlzi:@ujéui ds ds Zaui ds’ (B)+1s)

Second Fundamental Form (Cont.)

Because 0f/0u; is in the tangent plane of the surface,
we see that « (S) n 1s contributed from Vv(S) only, and

also
7 (8) =k N=1x,(s) N+ xs)S.
Further, because N and S are orthogonal,

K2=(Kkp)*+ (xy) 2%
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Definition 12.37

A geodesic curve on the surface f is a unit speed
regular curve in f with geodesic curvature x;,; equal to

zero everywhere along the curve.

Note that when x;= 0, then N = n.

Question: What are the geodesics on a sphere?
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o’ f du; du, of d°u
"(s) = L+ L=V(S)+1(S).
ay Z‘Z@uj&ui ds ds Zaui ds’ (B)+1)

Second Fundamental Form (Cont.)

K, :<7/"(S), n>
82 duj dUi or
ZZ<8u ou. /| ds ds +Z<

| du, du, du du,
ds ds ds ds
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Definition 12.38

l,]

ou;0u;

coefficients of the second fundamental form, and the

2
The scalars | . < o't ,n> are called the

matrix L = (L;;) 1s called the matrix of the second
fundamental form. The coefficients are also written

L=L,,M=L,,=L,,andN=1L,,.
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Definition 12.38 (Cont.)

For an arbitrary tangent vector, {aul ou, } :

ot ot
the form

H(@ul @uzj:{&ul 6u2}|{@u1 8u2}T
ot ot ot ot o ot |’

1s called the second fundamental form.

X"owun/A"N/n © Gershon Elber, Technion



Lemma 12.39

~/of on
ou;, ou.

Proof:

Because < > = () for all values of U,

o | of 0 f
0= ,N )= :
ou; \ou, ou;0u

and the result follow.
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Example 12.40

We calculate the second fundamental //

form’s coefficients for surface f(u) = (u,+u,, u,u,, u,-u,):

of of

— lau 919 = lau :_19
ou (1,u,,1) ou. (L, u;,—1)
of of

X
ou, ou,

— (_ul —U, ,2,U1 —U2),

and n— (_ul —U2 ,2,U1 B uz)

\/(ul -I—U2)2 —|—4—|—(U1 —U2)2 |
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of of
—=(Lu,,l)), —=u,,-1
=D, —==(u-)

u,

Example 12.40 (Cont.) R C RSN XIS

(ul _|_u2)2 -I—4—I—(U1 _uz)z

Further,

2

- \/(ul +U,)" +4+ (U, —u,)’
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Theorem 12.41

The second fundamental form is invariant under
coordinate transformations which have a positive
Jacobian.

Question: What would happen for a negative
Jacobian?
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Theorem 12.42

If 7,(s) and y,(S) are two arc length parameterized
curves in T with same tangent vector T at the same
(intersection) surface point, p, they both have the
same normal curvature at p.

Proof

](‘n :[dul duzl L [dul dU,Z
ds ds ds ds
coefticients of the second fundamental form and

the tangent vector of the curves.

X"owun/A"N/n © Gershon Elber, Technion
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Theorem 12.43

For curve y(S), an arc length parameterized curve with

normal N in surface f, let & be the angle between N and
Nn. Then,

K, = <7/"(S), n>
= K< N, n>

= K COos 0.
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Back to the Second Fundamental Form

| | | | 2
—L( j A\ 1 2—I—N( 2)
ds ds ds ds

i 2
L(%j Loy JUdu, (du
dt dt dt dt

) )
L(dulj Lo dudu, (du
dt dt dt dt

- 2
E(dulj +2F du, du, +G(du
dt dt dt dt
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Principal Curvatures

Consider the set S of all regular curves u(t) = (u,(t), u,(t))
such that ||du/dt|| = 1 at some surface point a.

The normal curvature 1s a continuous function over
the different directions of du/dt at a, which 1s closed and
bounded. We seek the maximum and minimum of x;, over

the set of S.
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Definition 12.45

The maximum and minimum values of the normal

curvature are called principal curvatures.

The directions for which these values are attained are
called principal directions of the surface. The
principal directions are unit vectors.
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Principal Curvatures (Cont.)

Assume £« 1s continuously differentiable as a function
du/dt, and let v = du/dt. The normal curvature varies

as Vv rotates along the unit circle and hence «;, 1s a
function of this change, « (V). Differentiating:

8111_ ol - GIII_ ol
0K, _ oV ?Vl " and oK, _ oV, ?Vz
oV, | ov, [

I1
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Principal Curvatures (Cont.)

Seeking the extremal values and because | # 0 (why?),

oll ol Il oIl ol ol 1 ol
= = -k, —, and O=—-x —.
ov, ov,

I1=Lv,?2+2Mv,v, + Nv,2and I = Ev,? + 2Fv,v, + GV,?
or Ol Ol

—=2Lv, +2Mv,, —=2Mv, +2Nv,,
oV, ov,

ﬂzzEvlJrszp ﬂ:2Fv1+2C5v2.

ov, ov,
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Principal Curvatures (Cont.)

Substituting these partials into the extremal functions,
Lv. + Mv, —x. (Ev, + Fv,) =0,
Mv, + Nv, -k, (Fv, +Gv,) =0,

(L-x.E)v, +(M —x F)v, =0,
(M-« F)v, +(N-x.G)v, =0.

In matrix form: | L-x E M —x F
M-k F N-xG
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L-x.E M-« F
M-x.F N-xG
Principal Curvatures (Cont.)

The determinant of the matrix must be zero (why?).
Therefore, expanding this determinant one gets,

(EG—-F*)x> —(GL+EN —2FM)x + (LN - M?) =0,

while from the properties of quadratic functions we get,
LN —M~ GL+EN-2FM

and x4k, =
EG-F? S EG-F?

KK, =
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Definition 12.46

The quantity «, x, 1s called the Gaussian curvature and
1s typically denoted by K.

The quantity («,+x, ) / 2 1s called the mean curvature
and 1s typically denoted by H.

The Gaussian and the mean (almost) curvatures are
invariants of the surface and are considered intrinsic
properties.
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Principal Curvatures (Cont.)

L-xE M=_KF

Going back to th t1
oing back to the equation M-xF N-xG

we also require that v, + v,”= 1. Using the first equation

in the above determinant, one gets, for 1 = 1,2:

(L .= )Vli
M-xF
Question: Why did we select the first equation and not

V, =-—

the second?
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Principal Curvatures (Cont.)

(I\/I — K, F)2 +(L—/ci E)2
(I\/I —/ciF)2 |
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Principal Curvatures (Cont.)

M-« F
JM =, F) +(L—x,E)

Hence, v, =

and similarly,
=

JM = FP+(L-xE)

V, =—
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Lemma 12.47

The principal directions at a point

on a surface are orthogonal.

Proof

Question: What if K=k, ?
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Example 12.48

Let f(u) = (r cos U, cos U,, I sin U, cos U,, I sin'll,), I > 0.
First order derivatives yield:
of
ou,
of
ou,
of of

2 . .
X =TI’ cosU, (cosu, cosu,,sm U, cosu,,sm U,)

ou, ou, v
n

= (—rsin u, cosu,, r cosu, cosu,,0),

= (— rcosu, Sin u,,—r s U, SIn U,,I Ccos U2)>
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of

o - (— I'sin U, cosU,, I cosU, cos UZ,O),
Example 12.48 (Cont.) °
of

= (— I cosu, sm U,,—rsn U, sin U,, I cos uﬁ),
- 2 2
ou,
of

——x—— = I’ cos U, (oS U, COS U5, 8in Upcos U, , sin U,)
ou, ou,

)
Hence, we have,

of of I
: =r"cos” Uu,,
ou, ou,

af , 51: _rZ’ j G
ou, ou,

of of

0,,=0,,= 5U1 ) 5U2

X"own/A"x/n

= r*(sin U, cos U, sin U, cosU, —sin U, cosU, sin U, cosU, )= 0

© Gershon Elber, Technion
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of .
——= ( I'sin U, cosU,, I cosu, cosuz,()),
ou,

Example 12 48 (Cont ) —rcosu, sin U,,—F sin U, sin U,, F cosU, ),

au,
ﬂ
ou,

= I’ cos U, (oS U, COS Uy,sin Upcos U,, sin U, )

Y

a .
au,

Second order derivatives yield,
0’ f
ou,”

0 f
ou,ou,
0’ f
ou,”

= (— I cosu, cosU,,—I sm U, cos uz,O),

= (rsin u, sin U,,—r cos U, sin u,,0),

= (— I cosu, cosu,,—I'sm U, cosU,,—I sin u2).
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o f
ou,”

Example 12.48 (Cont.) (v e

o’ f : :
— = (— I coS U; €08 Uy,—I sin Uy €OS U, ,—I sin U, ).

ou,”

= (— I cosu, cosU,,—I sm U, cos uz,O),

and recalling that n = (cos U, cos U,, sin U; cos U,, sin'U,),

0’ f

2
L, = n)=-rcos”u,,

ou,”

0’ f

L =
2,2 >
ou,”
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LN-M? |[L]
EG-F*> |G

Example 12.48 (Cont.)

KK, =

The Gaussian curvature equals:

Ll r?cos’u,

G| r'cos’u, r

and the mean curvature equals:

K +K, GL+EN-2FM _ 9, I—1,1 T 91,1|—2,2 _291,2 I—1,2
2 2IG 2IG

1
DR

K=xx,=

H_

—r’cos’u,—r’cos’u,
2r* cos’ U,
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Example 12.49

A saddle surface with parameterization (u) = (U, U,, U,U,).

First order derivatives yield:

of

< (1,0 -
au, (1.0, I+(u,) uu,

—> G=

i:(O,l,ul), U, 1"’(“1)2 |

ou,

o a =(-u,,~u,l) = n= Cu,u.l) .
ou, ou, \/(U1)2+(U2)2+1
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_ (—uz,—ul,l)
Example 12.49 (Cont.) "~ Juy (0, +1

A saddle surface with parameterization (u) = (U,, U,, U,U,).
Second order derivatives yield :

0 f

>=(0,0,0),
ou,
2
o f _ (0,0,l), : L — > 5

ou,ou, \/(Ul) +(U2) +1

0 f
=10,0,0).
(000
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Example 12.49 (Cont.)

The Gaussian curvature equals:

L 1
K=KkK,=—=—

Gl (14w ) +(u))

and the mean curvature equals:
K, tK, GL+ EN-2FM B 05, I—1,1 T 91,1|—2,2 _291,2 I—1,2
2 2iG 2IG

H =

u,u,

1+ P +(,F)”
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Example 12.50

X _~

A cylindrical surface with radius r, f(u) =

(r cos u,, I sin U, U,). First order derivatives yield:
of
ou,
of

—=(0,0,1
auz (99)9

gli X ;L =(rcosu,,rsinu,0) = n=/(cosu,,sin u,,0)

= (— 'sm U,, I cos ul,O),

—> G-=
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Example 12.50 (Cont.) " =/(cosu,.sinu,.0)

Second order derivatives yield :

o f
ou,”

o’ f
=(0,0,0
ou,ou, (0.0.0) —

0 f
=10,0,0).
- (000

= (— rcosu,,—rsm U, ,O),
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Example 12.50 (Cont.) G =

The Gaussian curvature ec

L
G

and the mean curvature equals:
kK, +x, GL+EN-2FM
2 2|6
_ gz,z L1,1 T 91,1 Lz,z _291,2 Ll,z _
26

X"owun/A"N/n © Gershon Elber, Technion
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The Osculating Paraboloid

Consider the second order Taylor approximation to f at a:

f(a+v)— f(a)= [ﬁ(a)v +— f (a)vzj

ou, ou
0’ f 82 f * f >
2[ P @) +25 2 @, ™ (vz)j
+ R(V).
where R(V) 1s the remainder term of third order.
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The Osculating Paraboloid (Cont.)

Define the second order approximation function around a:

5, (V) = [Sj(a)v L <a>vj

1

182 ﬁzf > f >
Aty vo &Lty ]

ou,” (’iulau2

The first term 1s clearly in the tangent plane.
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The Osculating Paraboloid (Cont.)
-

Considering the behavior of o ,(V) outside the tangent

plane, we get,

pV) =(J; . (v).N)

1{/0°f 2 o° f 0 f 2
- 2(< o n>(a)(vl ) + 2< R n>(a)vlv2 + <&u22, n>(a)(vz) j

|
= (L) 2L+ L ()

|
=—1I(v,,Vv,).
2 (1 2)
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Definition 12.51

The surface p(v), as a function of v measures the
approximate distance of T from the tangent plane and is

called the osculating paraboloid.

For each fixed value p(v) = p,, the resulting implicit

curve 1s a conic, quadratic curve in v = (V,, V,).
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The Osculating Paraboloid (Cont.)

If |[L| > 0, the surface p(V) 1s called an elliptic paraboloid.

Contours p(V) = p, of

the osculating paraboloid
that are parallel to the

tangent plane are

ellipses.
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The Osculating Paraboloid (Cont.)

If |L| <0, the surface p(V) is called a hyperbolic

paraboloid.

Contours p(V) = p, of

the osculating paraboloid

are hyperbolas.
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The Osculating Paraboloid (Cont.)

If [L| = 0, the surface p(V) 1s a parabolic cylinder.

Contours p(V) = p, of

the osculating paraboloid

are parabolas (or lines).
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Teapot - Mean Curvature
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Teapot - Gaussian Curvature
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Teapot - Parabolic Edges
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Polygonal Models — Curvature Estimation I

There are many polygonal models out there

In many cases, the models approximate C> smooth
surfaces.

A possible solution: to each vertex of the polygonal
model, fit a paraboloid to the local neighborhood.

Extract the principal curvatures (and hence K and H)
and principal directions by examining the paraboloid.
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Polygonal Models — Curvature Estimation 11

The Gaussian Curvature at a vertex V, K, can

also be estimated using vertices’ angular

deficiency: 27— Z o

K

V A\/ 9
where A, 1s the effective area associated with V,

and «; is the ith angle around vertex V.
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Polygonal Models — Curvature Estimation 111

D
The Gauss Bonnet theorem over a closed

sufficiently continuous surface S states that

| K =27y,

where

Y. =2-20 is the Euler characteristics of the

surface and g 1s 1ts Genus.
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J K=2ry,
Polygonal Models — Curvature Estimation IV

’
And the discrete > K, =)
Gauss Bonnet i i
theorem (triangular
model) states that:

For V vertices, E edges

and T triangles (and
2|E| = 3[T)).
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