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Tensor Product Surfaces

Definition 13.1:
Consider F and G, two sets of univariate functions with
intervals domains U and V, respectively,

F = { fi(u) }i = 0, m,    G = { gj(v) }j = 0, n.
A surface formed by

is called a tensor product surface with domain U × V.
If ci,j  R3 for all i, j, then h is a parametric surface.
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A Bilinear Surface

Example 13.2:
Consider the linear blending functions 
F = { f0(u) = 1-u,   f1(u) = u } and   G = { g0(v) = 1-v,   g1(v) = v }, 
with domain U = [0, 1] and V = [0, 1].   The tensor product surface

is a bilinear tensor product surface with domain U × V.
Question: What is the value of h(u, v) at u = 0, 1 and v = 0, 1 ?
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A Tensor Product Bezier Surface

Definition 13.3:
Consider P = { Pi,j R3 | 0 ≤ i ≤ m ,  0 ≤ j ≤ n } and collection of
functions

The parametric surface

is called  a degree m × n tensor product Bezier surface with domain 

U × V = [0, 1] × [0, 1].
Question: What is the value of (u, v) at u = 0, 1 or v = 0, 1?
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Bezier Surfaces (Cont.)

From properties of Bernstein polynomials
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A Tensor Product B-spline Surface

Definition 13.4:
Consider P = { Pi,j R3 | 0 ≤ i ≤ m ,  0 ≤ j ≤ n } and collection of
functions                                                       where u and v are knot
vectors of length m + ku + 2 and n + kv + 2, respectively.
The parametric surface

is called  a degree ku × kv tensor product B-spline surface with domain

U × V = [u(ku) , u(m+1) ) × [v(kv) , v(n+1) ).
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B-spline Products

Example 13.5:   Consider u = v= { 0, 0, 0, 1, 2, 2, 2} and

quadratic functions. We draw the different products:

   vBuB 2,02,0    vBuB 2,12,0
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B-spline Products (Cont.)

Example 13.5 (Cont.):
u = v= { 0, 0, 0, 1, 2, 2, 2}.

   vBuB 2,22,0    vBuB 2,32,0
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B-spline Products (Cont.)

Example 13.5 (Cont.):
u = v= { 0, 0, 0, 1, 2, 2, 2}.

   vBuB 2,12,1    vBuB 2,22,1
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B-spline Products (Cont.)

Example 13.5 (Cont.):
u = v= { 0, 0, 0, 1, 2, 2, 2}.

   vBuB 2,32,1    vBuB 2,22,2
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B-spline Products (Cont.)

Example 13.5 (Cont.):
u = v= { 0, 0, 0, 1, 2, 2, 2}.

   vBuB 2,32,2    vBuB 2,32,3
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Control Mesh

Definition 13.7:

The collection

P = { Pi,j  R3 | 0 ≤ i ≤ m ,  0 ≤ j ≤ n }

is called the control mesh for the Bezier/B-spline surface.
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Convex Combination

Lemma 13.8:
Suppose                                                       is a tensor

product B-spline surface, for the proper domain. Then
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Convex Combination (Cont.)

Lemma 13.8 (cont.):
Proof:

Then
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Surface Evaluation

Consider                                                       

and

Question: What is the difference between (u, v)
and (u, v)?
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Partial Derivatives’ Evaluation

Consider                                                       

How can we compute                and                 ?
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Question:  What about /v?
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Tensor Product Example 1

Consider curve 1 and 2 .  Recall that if we seek 
the minimal distance between 1 and 2 , we need 
to compute the extrema of:

1 2  ଶ

1 2 1 2 .
To compute the extrema of , we differentiate:

ௗఙሺ௨,௩ሻ
ௗ௨ 1 1 2 ,

only to seek the simultaneous zeros of both partials.
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Tensor Product Example 1 (cont)

Question: How do we represent 1 and

1 2 as tensor product surface (bivariate), 
like ?

𝑑𝜎ሺ𝑢, 𝑣ሻ
𝑑𝑢 ൌ 2 𝐶1′ሺ𝑢ሻ, 𝐶1ሺ𝑢ሻ െ 𝐶2ሺ𝑣ሻ

For 1 : 

1  
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Tensor Product Example 1 (cont)

𝑑𝜎ሺ𝑢, 𝑣ሻ
𝑑𝑢 ൌ 2 𝐶1′ሺ𝑢ሻ, 𝐶1ሺ𝑢ሻ െ 𝐶2ሺ𝑣ሻ

Same for 1 2 :
1 2
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Tensor Product Example 2

Consider two curves 1   and                
2   , [0,1], and compute                   

the ruled surface between them:

1 2 [0,1]  
                     

  ,ଵ   ଵ,ଵ

 
ଵ
ୀ ,ଵ ,

where   for j = 0 and   for j = 1.

𝐶1 𝑢

𝐶2ሺ𝑢ሻ
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Tensor Product Example 3

Consider two tensor product surfaces

1    and                           

2    , 
[0,1], 

and compute the 
ruled trivariate between them:

1 2 [0,1]

𝑆1 𝑢, 𝑣

𝑆2 𝑢, 𝑣
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Tensor Product Example 3 (cont.)

1 2 [0,1]  
                                       
                             

   ,ଵ                        
             ଵ,ଵ

   ,ଵ
ଵ
ୀ ,

where   for k = 0 and   for k = 1.
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Tensor Product Example 3 (cont.)

represents a solid object.  Meaning 
represents both the boundary of the 
geometry and its interior, which, 
for example, can be heterogeneous.

Very important, for example, for:
3D printing of heterogeneous materials:
Analysis (stress/heat transfer, etc.).
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Tensor Product Example 4

We talked about curves, surfaces, and trivariates.
Generalizing, we can talk about multivariate functions 

in the Bezier and B-spline.
This allows us to represent arbitrary 

polynomials function in any dimension
and range.
Opens up whole new areas of research,
 Work in multivariate constraints solving.


