Computer Aided Geometric Design Surface Representations

©Gershon Elber, Technion

based on a book by Cohen, Riesenfeld, & Elber

ה'/אייר/תשפ"א

Tensor Product Surfaces

Definition 13.1:

Consider F and G, two sets of univariate functions with intervals domains U and V, respectively,

 $\boldsymbol{F} = \{f_i(u)\}_{i=0,m}, \quad \boldsymbol{G} = \{g_j(v)\}_{j=0,n}.$

A surface formed by

$$h(u,v) = \sum_{j=0}^{n} \sum_{i=0}^{m} c_{i,j} f_i(u) g_j(v)$$

is called a tensor product surface with domain $U \times V$.

If $c_{i,j} \in \mathbb{R}^3$ for all *i*, *j*, then *h* is a parametric surface.

ה'/אייר/תשפ"א

A Bilinear Surface

Example 13.2:

Consider the linear blending functions

 $F = \{ f_0(u) = 1 - u, f_1(u) = u \}$ and $G = \{ g_0(v) = 1 - v, g_1(v) = v \},$ with domain U = [0, 1] and V = [0, 1]. The tensor product surface

$$h(u,v) = c_{0,0}f_0(u)g_0(v) + c_{0,1}f_0(u)g_1(v) + c_{1,0}f_1(u)g_0(v) + c_{1,1}f_1(u)g_1(v)$$

is a bilinear tensor product surface with domain $U \times V$. Question: What is the value of h(u, v) at u = 0, 1 and v = 0, 1?

ה'/אייר/תשפ"א

A Tensor Product Bezier Surface

Definition 13.3:

Consider $\mathbf{P} = \{ P_{i,j} \in \mathbb{R}^3 \mid 0 \le i \le m, 0 \le j \le n \}$ and collection of functions $\mathbf{F} = \{ \theta_{i,m}(u) \}_{i=0}^m$ $\mathbf{G} = \{ \theta_{j,n}(v) \}_{j=0}^n$.

The parametric surface

$$\sigma(u,v) = \sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} \theta_{i,m}(u) \theta_{j,n}(v)$$

is called a degree $m \times n$ tensor product Bezier surface with domain $U \times V = [0, 1] \times [0, 1].$

Question: What is the value of $\sigma(u, v)$ at u = 0, 1 or v = 0, 1?

Bezier Surfaces (Cont.)

From properties of Bernstein polynomials

$$\begin{aligned} \sigma(u,0) &= \sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} \theta_{i,m}(u) \theta_{j,n}(0) = \sum_{i=0}^{m} P_{i,0} \theta_{i,m}(u), \\ \sigma(u,1) &= \sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} \theta_{i,m}(u) \theta_{j,n}(1) = \sum_{i=0}^{m} P_{i,n} \theta_{i,m}(u), \\ \sigma(0,v) &= \sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} \theta_{i,m}(0) \theta_{j,n}(v) = \sum_{j=0}^{n} P_{0,j} \theta_{j,n}(v), \\ \sigma(1,v) &= \sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} \theta_{i,m}(1) \theta_{j,n}(v) = \sum_{j=0}^{n} P_{m,j} \theta_{j,n}(v). \end{aligned}$$

A Tensor Product B-spline Surface

Definition 13.4:

Consider $P = \{ P_{i,j} \in R^3 \mid 0 \le i \le m, 0 \le j \le n \}$ and collection of functions $F = \{ B_{i,k_u,\tau_u}(u) \}_{i=0}^m, G = \{ B_{j,k_v,\tau_v}(v) \}_{j=0}^n$, where τ_u and τ_v are knot vectors of length $m + k_u + 2$ and $n + k_v + 2$, respectively. The parametric surface

$$\sigma(u,v) = \sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} B_{i,k_u,\tau_u}(u) B_{j,k_v,\tau_v}(v)$$

is called a degree $k_u \times k_v$ tensor product B-spline surface with domain

 $U \times V = [\boldsymbol{\tau}_u(k_u), \boldsymbol{\tau}_u(m+1)) \times [\boldsymbol{\tau}_v(k_v), \boldsymbol{\tau}_v(n+1)).$

ה'/אייר/תשפ"א

B-spline Products

Example 13.5: Consider $\tau_u = \tau_v = \{0, 0, 0, 1, 2, 2, 2\}$ and quadratic functions. We draw the different products:

ה'/אייר/תשפ"א

B-spline Products (Cont.)

Control Mesh

Definition 13.7:

The collection

 $\mathbf{P} = \{ P_{i,j} \in \mathbb{R}^3 \mid 0 \le i \le m, \ 0 \le j \le n \}$

is called the control mesh for the Bezier/B-spline surface.

ה'/אייר/תשפ"א

Convex Combination

Lemma 13.8:

Suppose $\sigma(u, v) = \sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} B_{i,k_u,\tau_u}(u) B_{j,k_v,\tau_v}(v)$ is a tensor product B-spline surface, for the proper domain. Then

$$1 = \sum_{j=0}^{n} \sum_{i=0}^{m} B_{i,k_{u},\tau_{u}}(u) B_{j,k_{v},\tau_{v}}(v).$$

Convex Combination (Cont.)

Lemma 13.8 (cont.):

Proof:

$$\sum_{i=0}^{m} B_{i,k_{u},\tau_{u}}(u) = 1, \quad \sum_{j=0}^{n} B_{j,k_{v},\tau_{v}}(v) = 1.$$

$$\sum_{j=0}^{n} \sum_{i=0}^{m} B_{i,k_{u},\tau_{u}}(u) B_{j,k_{v},\tau_{v}}(v) = \sum_{j=0}^{n} \left(\sum_{i=0}^{m} B_{i,k_{u},\tau_{u}}(u)\right) B_{j,k_{v},\tau_{v}}$$

Then

 $=0 \quad i=0$ $= \sum_{j=0}^{n} B_{j,k_{v},\tau_{v}}(v)$ = 1.

ה'/אייר/תשפ"א

© Gershon Elber, Technion

V

Surface Evaluation

Consider
$$\sigma(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} P_{i,j} B_{j,k_v,\tau_v}(v) B_{i,k_u,\tau_u}(u),$$

and

$$\varphi(u,v) = \sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} B_{i,k_u,\tau_u}(u) B_{j,k_v,\tau_v}(v).$$

Question: What is the difference between $\sigma(u, v)$ and $\varphi(u, v)$?

ה'/אייר/תשפ"א

Partial Derivatives' Evaluation

Consider
$$\sigma(u,v) = \sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} B_{i,k_u,\tau_u}(u) B_{j,k_v,\tau_v}(v).$$

How can we compute
$$\frac{\partial \sigma(u,v)}{\partial u}$$
 and $\frac{\partial \sigma(u,v)}{\partial v}$?

 $\frac{\partial}{\partial u} \left(\sum_{j=0}^{n} \sum_{i=0}^{m} P_{i,j} B_{i,k_u,\tau_u}(u) B_{j,k_v,\tau_v}(v) \right) = \sum_{j=0}^{n} \frac{\partial}{\partial u} \left(\sum_{i=0}^{m} P_{i,j} B_{i,k_u,\tau_u}(u) \right) B_{j,k_v,\tau_v}(v).$

Question: What about $\partial \sigma / \partial v$?

ה'/אייר/תשפ"א

Tensor Product Example 1

Consider curve $C_1(u)$ and $C_2(v)$. Recall that if we seek the minimal distance between $C_1(u)$ and $C_2(v)$, we need to compute the extrema of:

$$\sigma(u, v) = \|C_1(u) - C_2(v)\|^2$$

= $\langle C_1(u) - C_2(v), C_1(u) - C_2(v) \rangle$.

To compute the extrema of $\sigma(u, v)$, we differentiate:

$$\frac{d\sigma(u,v)}{du} = 2\langle C_1'(u), C_1(u) - C_2(v) \rangle,$$

only to seek the simultaneous zeros of both partials.

ה"/אייר/תשפ"א

$\frac{d\sigma(u,v)}{du} = 2\langle C_1'(u), C_1(u) - C_2(v) \rangle$ Tensor Product Example 1 (cont)

Question: How do we represent $C_1'(u)$ and $C_1(u) - C_2(v)$ as tensor product surface (bivariate), like $\sigma(u, v)$?

For $C_1'(u)$: $C_1'(u) = \sum P_i \theta_i(u)$ $= \sum P_i \theta_i(u) \sum \theta_j(v)$ $= \sum \sum P_i \theta_i(u) \theta_j(v).$

$\frac{d\sigma(u,v)}{du} = 2\langle C_1'(u), C_1(u) - C_2(v) \rangle$ Tensor Product Example 1 (cont)

Same for $C_1(u) - C_2(v)$: $C_1(u) - C_2(v) =$ $= \sum P_i \theta_i(u) - \sum Q_j \theta_j(v)$ $= \sum P_i \theta_i(u) \sum \theta_j(v) - \sum Q_j \theta_j(v) \sum \theta_i(u)$ $= \sum \sum (P_i - Q_j) \theta_i(u) \theta_j(v)$.

Tensor Product Example 2

Consider two curves $C_1(u) = \sum P_i \theta_i(u)$ and $C_2(u) = \sum Q_i \theta_i(u), u \in [0,1]$, and compute the ruled surface between them:

$$\sigma(u,v) = C_1(u)(1-v) + C_2(u)v, \quad v \in [0,1]$$
$$= \sum P_i \theta_i(u) (1-v) + \sum Q_i \theta_i(u) v$$

 $= \sum P_i \theta_i(u) \,\theta_{0,1}(v) + \sum Q_i \theta_i(u) \,\theta_{1,1}(v)$

$$= \sum_{j=0}^{1} \sum R_{ij} \theta_i(u) \,\theta_{j,1}(v),$$

where $R_{ij} = P_i$ for j = 0 and $R_{ij} = Q_i$ for j = 1.

 $C_1(u)$

 $C_2(u)$

Tensor Product Example 3

Consider two tensor product surfaces $S_{1}(u, v) = \sum \sum P_{ij}\theta_{i}(u)\theta_{j}(v) \text{ and }$ $S_{2}(u, v) = \sum \sum Q_{ij}\theta_{i}(u)\theta_{j}(v),$ $u, v \in [0,1],$ and compute the ruled trivariate between them:

T(u, v, w) =

 $S_1(u)(1-w) + S_2(u)w, w \in [0,1]$

 $S_2(u,v)$

 $S_1(u,v)$

Tensor Product Example 3 (cont.)

 $T(u, v, w) = S_1(u)(1 - w) + S_2(u)w,$ $w \in [0,1]$ $= \sum \sum P_{ii}\theta_i(u)\theta_i(v)\left(1-w\right) +$ $\sum \sum Q_{ij}\theta_i(u)\theta_j(v)w$ $= \sum \sum P_{ii}\theta_i(u)\theta_i(v)\theta_{0,1}(w) +$ $\sum \sum Q_{ii}\theta_i(u)\theta_i(v) \ \theta_{1,1}(w)$ $=\sum_{k=0}^{1}\sum\sum R_{ijk}\theta_{i}(u)\theta_{j}(v)\theta_{k,1}(w),$ where $R_{iik} = P_{ii}$ for k = 0 and $R_{iik} = Q_{ii}$ for k = 1.

Tensor Product Example 3 (cont.)

T(u, v, w) represents a solid object. Meaning T represents both the boundary of the geometry and its interior, which, for example, can be heterogeneous.

Very important, for example, for:
3D printing of heterogeneous materials:
Analysis (stress/heat transfer, etc.).

Tensor Product Example 4

- □ We talked about curves, surfaces, and trivariates.
- Generalizing, we can talk about multivariate functions in the Bezier and B-spline.
- This allows us to represent arbitrary polynomials function in any dimension and range.
- Opens up whole new areas of research,Work in multivariate constraints solving.

