Computer Aifled Geometric Design

©Gershon Elber, Techmion based on a book by Cohern, Riesenfélal, \& Eiber

Definition 3.1 (The Circle)

Given a point C in a plane and a number $R \geq 0$, the circle with center C and radius R is defined as the set of all points in the plane at distance R from the point C. In set notation we write,

$$
\{P=(x, y):\|P-C\|=R\}
$$

Definition 3.2 (The Ellipse)

Given two points, F_{1} and F_{2} called the foci and a number $K \geq\left\|F_{1}-F_{2}\right\|$, an ellipse is defined as the set of all points the sum of whose distances from the foci K. That is,

$\left\{P=(x, y):\left\|P-F_{1}\right\|+\left\|P-F_{2}\right\|=K\right\}$.

The Ellipse

The axis containing the foci is called the major axis of the ellipse and the axis orthogonal to the major axis through the center, $C=\left(F_{1}+F_{2}\right) / 2$, is denoted the minor axis.

If center C is at some location $C=\left(c_{x}, c_{y}\right)$ the ellipse equals,

$$
1=\frac{\left(x-c_{x}\right)^{2}}{a^{2}}+\frac{\left(y-c_{y}\right)^{2}}{b^{2}}
$$

Definition 3.3 (The Hyperbola)

Given two points, F_{1} and F_{2} called the foci and a number $K \neq 0$, a hyperbola is defined as the set of all points the difference of whose distances from the foci K. That is,

$$
\left\{P=(x, y):\left\|P-F_{1}\right\|-\left\|P-F_{2}\right\|= \pm K\right\} .
$$

Question: What if $K=0$?

The Hyperbola

The axis containing the foci is called the major axis of the
hyperbola and the axis orthogonal to the major axis through the center, $C=\left(F_{1}+F_{2}\right) / 2$, is denoted the minor axis.

If center C is at some location $C=\left(c_{x} c_{y}\right)$ the hyperbola equals,

$$
1=\frac{\left(x-c_{x}\right)^{2}}{a^{2}}-\frac{\left(y-c_{y}\right)^{2}}{b^{2}} \quad \text { or } \quad 1=\frac{\left(y-c_{y}\right)^{2}}{a^{2}}-\frac{\left(x-c_{x}\right)^{2}}{b^{2}} .
$$

Definition 3.4 (The Parabola)

Given a fixed point F called the focus and a fixed line called the directrix, the set of points equidistant (bisector) from F and the directrix is called a parabola.

The Parabola

Let the directrix be the line $x=-c$ and assume $F=(c, 0)$. Then,

$$
x+c=\sqrt{(x-c)^{2}+y^{2}},
$$

and by squaring the expression,

$$
\begin{aligned}
x^{2}+2 x c+\underline{c^{2}} & =\underline{x^{2}}-2 x c+\underline{\underline{c^{2}}}+y^{2} \\
4 x c & =y^{2}
\end{aligned}
$$

Conic Sections

Consider the cone $z^{2}=m^{2}\left(x^{2}+y^{2}\right)$, where m is a real number.

Question: What is the affect of m ?
Question: What is the shape of a

Plane-Cone intersection?

$$
z^{2}=m^{2}\left(x^{2}+y^{2}\right)
$$

Conic Sections

Consider the plane $x=k$. Then,
$z^{2}=m^{2}\left(k^{2}+y^{2}\right)$, or $y^{2}=z^{2} / m^{2}-k^{2}$.
If $k=0, z= \pm m y$, or Two Lines.
$k \neq 0, \frac{z^{2}}{m^{2} k^{2}}-\frac{y^{2}}{k^{2}}=1$, or a Hyperbola
Question: What are the foci of the hyperbola?

כ"ט/חשון/תשפ"ב
© Gershon Elber, Technion

Conic Sections

Consider the plane $z=b$. Then, $b^{2} / m^{2}=x^{2}+y^{2}$, or a circle.

$$
z^{2}=m^{2}\left(x^{2}+y^{2}\right)
$$

Question: What if $b=0$?

Conic Sections

Consider the plane $z=a x+b$, $a \neq 0$. Then,

$$
m^{2}\left(x^{2}+y^{2}\right)=(a x+b)^{2}
$$

$$
=a^{2} x^{2}+2 a b x+b^{2},
$$

or,

$$
m^{2} y^{2}=\left(a^{2}-m^{2}\right) x^{2}+2 a b x+b^{2} .
$$

כ"ט/חשון/תשפ"ב
© Gershon Elber, Technion

Conic Sections $m^{2} y^{2}=\left(a^{2}-m^{2}\right) x^{2}+2 a b x+b^{2}$.

If $a= \pm m$, then the intersection curve equals $m^{2} y^{2}=2 a b x+b^{2}$ or,

$$
y^{2}=\frac{2 a b x}{m^{2}}+\frac{b^{2}}{m^{2}},
$$

a Parabola.

Question: What if $b=0$?

כ"ט/חשון/תשפ"ב
© Gershon Elber, Technion

Conic Sections $m^{2} y^{2}=\left(a^{2}-m^{2}\right) x^{2}+2 a b x+b^{2}$.

If $a^{2}<m^{2}$ then let $r^{2}=m^{2}-a^{2}$ and $m^{2} y^{2}=-\left(\left(m^{2}-a^{2}\right) x^{2}-2 a b x\right)+b^{2}$ $=-\left(r^{2} x^{2}-2 a b x\right)+b^{2}$, and by completing the square,

$$
m^{2} y^{2}=-\left(r x-\frac{a b}{r}\right)^{2}+\left(\frac{a b}{r}\right)^{2}+b^{2}
$$

Conic Sections

Multiplying by $r^{2}=m^{2}-a^{2}$, $r^{2} m^{2} y^{2}+\left(r^{2} x-a b\right)^{2}=a^{2} b^{2}+r^{2} b^{2}$

$$
=b^{2} m^{2},
$$

and dividing by $b^{2} m^{2}$,
$\frac{\left(x-\frac{a b}{m^{2}-a^{2}}\right)^{2}}{\frac{b^{2} m^{2}}{\left(m^{2}-a^{2}\right)^{2}}}+\frac{y^{2}}{\frac{b^{2}}{m^{2}-a^{2}}}=1$
כ"ט/חשון/תשפ"ב
© Gershon Elber, Technion

$$
m^{2} y^{2}=\left(a^{2}-m^{2}\right) x^{2}+2 a b x+b^{2} .
$$

Conic Sections

If $a^{2}>m^{2}$ then let $r^{2}=a^{2}-m^{2}$ and

$$
m^{2} y^{2}=r^{2} x^{2}+2 a b x+b^{2}
$$

$$
=\left(r x+\frac{a b}{r}\right)^{2}+b^{2}-\left(\frac{a b}{r}\right)^{2}
$$

and by multiplying by r^{2},

$$
\left(r^{2} x+a b\right)^{2}-r^{2} m^{2} y^{2}=b^{2} m^{2}
$$

כ"ט/חשון/תשפ"ב
© Gershon Elber, Technion

Conic Sections

$\left(r^{2} x+a b\right)^{2}-r^{2} m^{2} y^{2}=b^{2} m^{2}$.
If $b=0$, either $x= \pm m y / r$ or we have crossing lines.
Otherwise, $b \neq 0$, divide by $b^{2} m^{2}$,

a Hyperbola.
כ"ט/חשון/תשפ"ב
© Gershon Elber, Technion

Implicit Quadratic Functions as Conics

We have seen that all conic sections are quadratic implicit forms.

Question: Are all quadratic implicit forms conic sections?

Implicit Quadratic Functions as Conics

Consider the general quadratic implicit form of

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

Question: Is there a change of basis from (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ such that the same graph is drawn by the curve,

$$
A^{\prime} x^{\prime 2}+C^{\prime} y^{, 2}+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F^{\prime}=0 ?
$$

Definition 3.7

For the quadratic equation:

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0,
$$

the quantity $B^{2}-4 A C$, is called the discriminant.
Theorem 3.8

The discriminant is invariant under rotations.

Theorem 3.9

Every implicit quadratic is a conic section and

$$
\text { if } B^{2}-4 A C \begin{cases}<0, & \text { the curve is an ellipse, } \\ =0, & \text { the curve is a parabola, } \\ >0, & \text { the curve is a hyperbola. }\end{cases}
$$

Proof

Since the discriminant is invariant under rotations, rotate through the special angle θ so that $B^{\prime}=0$ in the new rotated coordinate system. Then,

$$
B^{2}-4 A C=B^{\prime 2}-4 A^{\prime} C^{\prime}=-4 A^{\prime} C^{\prime} .
$$

Theorem 3.10

An implicit function $f(x, y)=0$ is a conic section if and only if f is a second degree polynomial in x and y.

Question: How can we intuitively construct conic sections?

5 Points Construction

Question: How many degrees of freedom does the quadratic equation of $A x^{2}+B x y+C y^{2}+D x+E y+F=0$ have?

These degrees of freedom can be prescribed using five points $\left(x_{i}, y_{i}\right)$:

$$
\begin{aligned}
& A x_{1}^{2}+B x_{1} y_{1}+C y_{1}^{2}+D x_{1}+E y_{1}+F=0 \\
& A x_{2}^{2}+B x_{2} y_{2}+C y_{2}^{2}+D x_{2}+E y_{2}+F=0 \\
& A x_{3}^{2}+B x_{3} y_{3}+C y_{3}^{2}+D x_{3}+E y_{3}+F=0 \\
& A x_{4}^{2}+B x_{4} y_{4}+C y_{4}^{2}+D x_{4}+E y_{4}+F=0 \\
& A x_{5}^{2}+B x_{5} y_{5}+C y_{5}^{2}+D x_{5}+E y_{5}+F=0
\end{aligned}
$$

5 Points Construction (Cont.)

Or in matrix form,
$\left[\begin{array}{llllll}x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} & x_{1} & y_{1} & 1 \\ x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} & x_{2} & y_{2} & 1 \\ x_{3}^{2} & x_{3} y_{3} & y_{3}^{2} & x_{3} & y_{3} & 1 \\ x_{4}^{2} & x_{4} y_{4} & y_{4}^{2} & x_{4} & y_{4} & 1 \\ x_{5}^{2} & x_{5} y_{5} & y_{5}^{2} & x_{5} & y_{5} & 1\end{array}\right]\left[\begin{array}{c}A \\ B \\ C \\ D \\ E \\ F\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Questions: What is missing here?

5 Points Construction (Cont.)

Seeking a more intuitive approach, consider the four lines through the four given points,
L_{1} through P_{1} and P_{2}
L_{2} through P_{3} and P_{4}
L_{3} through P_{2} and P_{3}
L_{4} through P_{4} and P_{1}

5 Points Construction (Cont.)

Let $L_{i}(x, y)=a_{i} x+b_{i} y+c_{i}$. Then,

$$
\begin{array}{ll}
L_{1}\left(P_{j}\right)=0 & \text { for } j=1,2 \\
L_{2}\left(P_{j}\right)=0 & \text { for } j=3,4 \\
L_{3}\left(P_{j}\right)=0 & \text { for } j=2,3 \\
L_{4}\left(P_{j}\right)=0 & \text { for } j=4,1
\end{array}
$$

כ"ט/חשון/תשפ"ב

5 Points Construction (Cont.)

Let $L_{i}(x, y) L_{j}(x, y)=\left(a_{i} x+b_{i} y+c_{\mathrm{i}}\right)\left(a_{j} x+b_{j} y+c_{j}\right)$.
Observation: $L_{i}(x, y) L_{j}(x, y)$ is a quadratic equation in x and y.

Observation: $L_{1} L_{2}\left(P_{j}\right), j=1,2,3,4$ equal zero!
Now consider the surface (c constant),

$$
z=f(x, y)=L_{1} L_{2}(x, y)+c L_{3} L_{4}(x, y)
$$

Question: To what is $f\left(P_{j}\right), j=1,2,3,4$ equal?

$$
z=f(x, y)=L_{1} L_{2}(x, y)+c L_{3} L_{4}(x, y) .
$$

5 Points Construction (Cont.)

Question: How can we prescribe c ?
Define a fifth point, P_{5}, and ensure that

$$
\begin{aligned}
f\left(P_{5}\right) & =0 \\
& =L_{1} L_{2}\left(P_{5}\right)+c L_{3} L_{4}\left(P_{5}\right) .
\end{aligned}
$$

or,

$$
c=-\frac{L_{1}\left(P_{5}\right) L_{2}\left(P_{5}\right)}{L_{3}\left(P_{5}\right) L_{4}\left(P_{5}\right)} .
$$

Using Tangents

Let $L_{3} \equiv L_{4}$ and hence
$f(x, y)=L_{1} L_{2}+c L_{3}{ }^{2}$
Question: What does the shape of $f(x, y)$ look like?
P_{5} is denoted the shoulder point: $M=\left(P_{1}+P_{4}\right) / 2$, and the ρ-conic equals $\rho=\left\|P_{5}-M\right\| /\|T-M\|$.

Using Tangents

$P_{5}=(1-\rho) M+\rho T$. Then
the conic is a $\begin{cases}\text { Parabola, } & \text { if } \rho=\frac{1}{2}, \\ \text { Hyperbola, } & \text { if } \rho>\frac{1}{2}, \\ \text { Ellipse, } & \text { if } \rho<\frac{1}{2} .\end{cases}$

Conic Arcs as Rational Functions

Assume T, P_{1}, and P_{2} are not on the same line. Then, $\left\{U=P_{1}-T, V=P_{2}-T\right\}$ spans the $X Y$ plane. Every point in the $X Y$ plane can be written as
$(u, v)=T+u\left(P_{1}-T\right)+v\left(P_{2}-T\right)$.
Question: Is this coordinate system rigid-motion invariant?

$$
x_{0}=T_{x}+u\left(P_{1, x}-T_{x}\right)+v\left(P_{2, x}-T_{x}\right),
$$

$$
y_{0}=T_{y}+u\left(P_{1, y}-T_{y}\right)+v\left(P_{2, y}-T_{y}\right) .
$$

Conic Arcs as Rational Functions

Question: What are the (u, v) coordinates of the $T P_{1}$ line? The $T P_{2}$ line? The $P_{1} P_{2}$ line?
$L_{1}: v=0, L_{2}: u=0$,
$L_{3}: u+v-1=0$.

$L_{1}: T+u\left(P_{1}-T\right)=(1-u) T+u P_{1}$,
$L_{2}: T+v\left(P_{2}-T\right)=(1-v) T+v P_{2}$,
$L_{3}: T+u\left(P_{1}-T\right)+(1-u)\left(P_{2}-T\right)=u P_{1}+(1-u) P_{2}$.

Conic Arcs as Rational Functions

In $u v$ coordinates we have
$0=L_{1} L_{2}+c L_{3}{ }^{2}$

$$
=u v+\mathrm{c}(u+v-1)^{2} .
$$

Setting $\mathrm{c}=-\lambda /(1-\lambda)$, one gets $C(u, v)=(1-\lambda) u v-\lambda(u+v-1)^{2}=0$.

For $0 \leq \lambda \leq 1$, and $0 \leq u, v$ such that $u+v \leq 1$, $C(u, v)=0$ is inside the triangle $P_{1} T P_{2}$.

Consider a point P_{c} on $C(u, v)=0, P_{\mathrm{c}}=\left(u_{\mathrm{c}}, v_{\mathrm{c}}\right)$.

$$
A_{1}=\left(\frac{-2 \lambda\left(u_{c}+v_{c}-1\right)}{(1-\lambda) v_{c}-2 \lambda\left(u_{c}+v_{c}-1\right)}, 0\right)
$$

Conic Arcs as Rational Functions

Consider the ratio

$$
\begin{aligned}
r_{1} & =\frac{\left\|T A_{1}\right\|}{\left\|P_{1} A_{1}\right\|}=\frac{u_{1}}{1-u_{1}} \\
& =\frac{-2 \lambda\left(u_{c}+v_{c}-1\right)}{(1-\lambda) v_{c}}
\end{aligned}
$$

And the ratio

$$
r_{2}=\frac{\left\|T A_{2}\right\|}{\left\|P_{2} A_{2}\right\|}=\frac{v_{2}}{1-v_{2}}=\frac{-2 \lambda\left(u_{c}+v_{c}-1\right)}{(1-\lambda) u_{c}}
$$

$$
r_{1}=\frac{-2 \lambda\left(u_{c}+v_{c}-1\right)}{(1-\lambda) v_{c}}, \quad r_{2}=\frac{-2 \lambda\left(u_{c}+v_{c}-1\right)}{(1-\lambda) u_{c}}
$$

Conic Arcs as Rational Functions

And consider the product of these two ratios

$$
r_{1} r_{2}=\frac{4 \lambda^{2}\left(u_{c}+v_{c}-1\right)^{2}}{(1-\lambda)^{2} u_{c} v_{c}}
$$

On a point $\left(u_{c} v_{c}\right)$, in curve $C(u, v),(1-\lambda) u v=\lambda(u+v-1)^{2}$ or $\frac{1-\lambda}{\lambda}=\frac{\left(u_{c}+v_{c}-1\right)^{2}}{u_{c} \nu_{c}}$ and $r_{1} r_{2}=\frac{4 \lambda^{2}}{(1-\lambda)^{2}} \frac{1-\lambda}{\lambda}=\frac{4 \lambda}{1-\lambda}$.

Theorem 3.13

If P_{1}, T, P_{2}, A_{1} and A_{2} are as above, then the product of the ratios

$$
r_{1} r_{2}=\frac{\left\|T A_{1}\right\|\left\|T A_{2}\right\|}{\left\|A_{1} P_{1}\right\|\left\|A_{2} P_{2}\right\|}=\frac{u v}{(1-u)(1-v)}
$$

is a constant for the whole conic section.

Conic Arcs as Rational Functions ${ }_{r_{1}+r_{2}+r_{1} r_{2}} \frac{1-\lambda}{2 \lambda}$

Because $r_{1} r_{2}=\frac{4 \lambda}{1-\lambda}$, we have,

$$
u_{c}=\frac{r_{1}}{r_{1}+r_{2}+2} \quad \text { and similarly } \quad v_{c}=\frac{r_{2}}{r_{1}+r_{2}+2} .
$$

Conic Arcs as Rational Functions

Going back to the conic curve, we have

$$
\begin{aligned}
\gamma & =T+u_{c}\left(P_{1}-T\right)+v_{c}\left(P_{2}-T\right) \\
& =T+\frac{r_{1}}{r_{1}+r_{2}+2}\left(P_{1}-T\right)+\frac{r_{2}}{r_{1}+r_{2}+2}\left(P_{2}-T\right) \\
& =\frac{r_{1} P_{1}+2 T+r_{2} P_{2}}{r_{1}+2+r_{2}} .
\end{aligned}
$$

$$
\gamma=\frac{r_{1} P_{1}+2 T+r_{2} P_{2}}{r_{1}+2+r_{2}} .
$$

Conic Arcs as Rational Functions

In order to parameterize γ as a rational form $\gamma(t), t \in(a, b)$, r_{1} and r_{2} must satisfy the following constraints,

1. $r_{1} r_{2}=k, k=4 \lambda /(1-\lambda)$ constant.
2. $r_{1}(t), r_{2}(t)$ map (a, b) to $(0, \infty)$ and $(\infty, 0)$.
3. $r_{1}(t), r_{2}(t)$ must be monotone for $t \in(a, b)$.

Question: Why $r_{1}(t), r_{2}(t)$ map to $(0, \infty)$? Why is there a monotonicity constraint?

Conic Arcs as Rational Functions

One possible solution for $r_{1}(t), r_{2}(t)$ is $r_{1}(t)=\frac{w_{1}(b-t)}{w(t-a)}$ and $r_{2}(t)=\frac{w_{2}(t-a)}{w(b-t)}$:

$$
\begin{aligned}
K & =\frac{4 \lambda}{1-\lambda}=r_{1}(t) r_{2}(t) \\
& =\frac{w_{1}(b-t)}{w(t-a)} \frac{w_{2}(t-a)}{w(b-t)} \\
& =\frac{w_{1} w_{2}}{w^{2}} .
\end{aligned}
$$

or 1 is verified. 2 and 3 are trivial to verify as well.

Conic Arcs as Rational Functions

Then,

$$
\begin{aligned}
\gamma(t) & =\frac{r_{1} P_{1}+2 T+r_{2} P_{2}}{r_{1}+2+r_{2}}=\frac{\frac{w_{1}(t-a)}{w(t)} P_{1}+2 T+\frac{w_{2}(b-t)}{w(b-t)} P_{2}}{\frac{w_{1}(b-t-a)}{w\left(t-2+\frac{w_{2}(t-a)}{w(b-t)}\right.}} \\
& =\frac{w_{1}(b-t)^{2} P_{1}+2 w(t-a)(b-t) T+w_{2}(t-a)^{2} P_{2}}{w_{1}(b-t)^{2}+2 w(t-a)(b-t)+w_{2}(t-a)^{2}} .
\end{aligned}
$$

Hence, every conic section can be written as a rational quadratic parametric function.

Example 3.19 (Arc of a circle)

Assume a circle of radius r spanning α degs. For $r_{i}=1,2$,

$$
r_{i}=\frac{\left\|T A_{i}\right\|}{\left\|A_{i} P_{i}\right\|}=\frac{\left\|T A_{i}\right\|}{\left\|A_{i} P_{c}\right\|}=\frac{\left\|T A_{i}\right\|}{\left\|T A_{i}\right\| \cos (\theta / 2)}=\frac{1}{\cos (\theta / 2)}
$$

Thus,

$$
K=\frac{w_{1} w_{2}}{w^{2}}=r_{1} r_{2}=\frac{1}{\cos ^{2}(\theta / 2)}
$$

Question: What will be the effect, if any, of $w_{1} \leftarrow w_{1} \alpha, w_{2} \leftarrow w_{2} / \alpha$?

Homogeneous Coordinates

The rational form of quadratics equals,

$$
\gamma(t)=\frac{w_{1}(b-t)^{2} P_{1}+2 w(t-a)(b-t) T+w_{2}(t-a)^{2} P_{2}}{w_{1}(b-t)^{2}+2 w(t-a)(b-t)+w_{2}(t-a)^{2}} .
$$

Let $\theta_{1}(t)=(b-t)^{2}, \theta_{2}(t)=2(t-a)(b-t), \theta_{3}(t)=(t-a)^{2}$. Then,

$$
\begin{aligned}
\gamma(t) & =\frac{w_{1} P_{1} \theta_{1}(t)+w T \theta(t)+w_{2} P_{2} \theta_{2}(t)}{w_{1} \theta_{1}(t)+w \theta(t)+w_{2} \theta_{2}(t)} \\
& \equiv\left(w_{1} P_{1}, w_{1}\right) \theta_{1}(t)+(w T, w) \theta(t)+\left(w_{2} P_{2}, w_{2}\right) \theta_{2}(t) .
\end{aligned}
$$

