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Definition 3.1 (The Circle)

Given a point C in a plane and a number R  0, the circle with 

center C and radius R is defined as the set of all points

in the plane at distance R from the

point C. In set notation we write,

{ P = (x, y) : || P - C|| = R }
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Definition 3.2 (The Ellipse)

Given two points, F1 and F2

called the foci and a number

K  || F
1 

- F
2
||, an ellipse is 

defined as the set of all points

the sum of whose distances

from the foci K. That is,

{ P = (x, y) : || P - F
1
|| + || P - F

2
|| = K } .

y

x

P

F
2

F
1



ב"תשפ/חשון/ט"כ © Gershon Elber, Technion 4

The Ellipse

The axis containing the foci is called the major axis of the ellipse

and the axis orthogonal to the major axis through the center,

C = (F
1

+ F
2
) / 2, is denoted the minor axis.

If center C is at some location C = (c
x
, c

y
) the ellipse equals,
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Definition 3.3 (The Hyperbola) 

Given two points, F1 and F2

called the foci and a number

K  0, a hyperbola is

defined as the set of all points

the difference of whose distances

from the foci K. That is,

{ P = (x, y) : || P - F
1
|| - || P - F

2
|| =  K }.

Question:  What if K = 0 ?
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The Hyperbola

The axis containing the foci is called the major axis of the

hyperbola and the axis orthogonal to the major axis through the

center, C = (F
1

+ F
2
) / 2, is denoted the minor axis.

If center C is at some location C = (c
x
, c

y
) the hyperbola equals,

.
)()(

1 or                 
)()(

1
2

2

2

2

2

2

2

2

b

cx

a

cy

b

cy

a

cx xyyx −
−

−
=

−
−

−
=



ב"תשפ/חשון/ט"כ © Gershon Elber, Technion 7

Definition 3.4 (The Parabola)

Given a fixed point F called the focus and a fixed line 

called the directrix, the

set of points equidistant

(bisector) from F and

the directrix is called

a parabola.
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,)( 22 ycxcx +−=+

The Parabola

Let the directrix be the line x = -c and assume F = (c, 0). Then,
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and by squaring the expression,

(c, 0)

x = -c
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Conic Sections

Consider the cone z2 = m2(x2 + y2 ),

where m is a real number.

Question:  What is the affect of m?

Question:  What is the shape of a

Plane-Cone intersection?

z

y x
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Conic Sections

Consider the plane x = k.  Then,

z2 = m2(k2 + y2 ), or  y2 = z2 / m2 - k2 .

If k = 0,  z =  m y , or Two Lines .

k  0,                        , or a Hyperbola . 

Question:  What are the foci of the

hyperbola?
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Conic Sections

Consider the plane z = b. Then,

b2/m2 = x2 + y2, or a circle.

Question:  What if b = 0?

z
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z=b
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Conic Sections

Consider the plane z = ax + b,

a  0.  Then,

or,

,2
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Conic Sections

If a =  m, then the intersection

curve equals

or,

a Parabola.

Question: What if b = 0?
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Conic Sections

If a2 < m2 then let r2=m2- a2 and

and by completing the square,
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Conic Sections

Multiplying by r2 = m2 - a2,

and dividing by b2m2,

we get an Ellipse.

,
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Conic Sections

If a2 > m2 then let r2=a2-m2 and

and by multiplying by r2,
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Conic Sections

If b = 0, either x =  my/r or

we have crossing lines.

Otherwise, b 0, divide by b2m2,

a Hyperbola.
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Implicit Quadratic Functions as Conics

We have seen that all conic sections are

quadratic implicit forms.

Question:  Are all quadratic implicit forms

conic sections?
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Implicit Quadratic Functions as Conics

Consider the general quadratic implicit form of

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

Question: Is there a change of basis from (x, y) to (x’, y’ )

such that the same graph is drawn by the curve,

A’x’
2

+ C’y’
2

+ D’x’ + E’y’ + F’ = 0?
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Definition 3.7

For the quadratic equation:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

the quantity  B
2

- 4AC, is called the discriminant.

Theorem 3.8

The discriminant is invariant under rotations.
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Theorem 3.9

Every implicit quadratic is a conic section and
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Proof
Since the discriminant is invariant under rotations, 

rotate through the special angle  so that B’= 0 in 

the new rotated coordinate system. Then, 
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Theorem 3.10

An implicit function f (x, y) = 0 is a conic section if and

only if f is a second degree polynomial in  x and  y.

Question:  How can we intuitively construct conic

sections?
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5 Points Construction

Question:  How many degrees of freedom does the quadratic 

equation of Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 have?
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These degrees of freedom can be prescribed using five

points (xi, yi):
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5 Points Construction (Cont.)

Or in matrix form,

Questions:  What is missing here?
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5 Points Construction (Cont.)

Seeking a more intuitive approach,

consider the four lines through the

four given points,

L1 through P1 and P2

L2 through P3 and P4

L3 through P2 and P3

L4 through P4 and P1

L3

P1

L1

L4

L2

P4

P3
P2
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5 Points Construction (Cont.)

Let Li(x, y) = aix + biy + ci.  Then,
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5 Points Construction (Cont.)

Let Li(x, y) Lj(x, y) = (aix + biy + ci) (ajx + bjy + cj).

Observation: Li(x, y) Lj(x, y) is a quadratic equation in

x and y.

Observation: L1L2 (Pj ), j = 1,2,3,4 equal zero!

Now consider the surface (c constant),

Question:  To what is f (Pj ), j = 1,2,3,4 equal?
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5 Points Construction (Cont.)

Question:  How can we prescribe c?
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Define a fifth point, P5, and

ensure that
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Using Tangents

Let L3  L4 and hence

f (x, y) = L1 L2 + c L3

2

Question:  What does the shape of

f (x, y) look like?

P1=P2

L1

L3=L4

L2

P3=P4

P5 is denoted the shoulder point:

M = (P1+P4) / 2, and the  -conic

equals  = P5 - M  /  T - M .

P5

T

M
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Using Tangents

P
5

= (1 -  ) M + T.  Then

the conic is a

P1=P2

L1

L3=L4

L2

P3=P4

P5

T

M

,

.
2

1
 if         Ellipse,

2

1
 if   Hyperbola,

,
2

1
 if      Parabola,
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Conic Arcs as Rational Functions

Assume T, P1, and P2 are not on the same line.  Then,

{U = P1 - T, V = P2 - T} spans the XY plane.  Every 

point in the XY plane can be written as

(u, v) = T+u(P1 - T)+v(P2 - T).

Question:  Is this coordinate

system rigid-motion invariant?

x0 = Tx+u (P1,x -Tx)+v (P2,x -Tx),

y0 = Ty+u (P1,y -Ty)+v (P2,y -Ty).

T

U

V

P1
U=1,V=0

U=0,V=1

P2
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Conic Arcs as Rational Functions

Question:  What are the (u, v)
__________________

coordinates of the T P1 line?
__________________                                                                     ______________________

The T P2 line? The P1P2 line?
T

U

V

P1
U=1,V=0

U=0,V=1

P2

L1 :  v = 0,   L2 :  u = 0,

L3 :  u+v - 1 = 0. 

L1 : T +u (P1 - T ) = (1-u)T +uP1 ,

L2 : T +v (P2 - T ) = (1-v)T +vP2 ,

L3 : T +u (P1 - T ) + (1-u) (P2 - T ) = u P1 + (1-u)P2 .

L3
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Conic Arcs as Rational Functions

In uv coordinates we have

0 = L1 L2 + c L3

2 

= uv + c(u + v - 1) 
2
.

Setting c = -/(1 - ), one gets

C(u, v) =(1-)uv -(u+v-1)
2
= 0.

For  0    1, and 0  u, v such that u + v  1,

C(u, v) = 0 is inside the triangle P1T P2 .

Consider a point Pc on C(u, v) = 0, Pc = (uc, vc).

T

U

V

P1
U=1,V=0

U=0,V=1

P2

(uc,vc)

u1

v2
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Conic Arcs as Rational Functions

Consider the ratio

And the ratio
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Conic Arcs as Rational Functions

And consider the product of

these two ratios T

U

V
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U=1,V=0

U=0,V=1
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Theorem 3.13

If P1, T, P2, A1 and A2 are

as above, then the product

of the ratios 

is a constant for the whole conic section.
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Conic Arcs as Rational Functions

Because                       , we have,

and similarly                       
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Conic Arcs as Rational Functions

Going back to the conic curve, 

we have
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Conic Arcs as Rational Functions

In order to parameterize  as a rational form  (t), t(a, b), 

r1 and r2 must satisfy the following constraints,

1. r1r2= k, k = 4/(1-) constant.

2. r1(t), r2(t) map (a, b) to (0, ) and (, 0).

3. r1(t), r2(t) must be monotone for t(a, b).

Question:  Why r1(t), r2(t) map to (0,  )?  Why is there a 

monotonicity constraint?

.
2

2

21

2211

rr

PrTPr

++

++
=



ב"תשפ/חשון/ט"כ © Gershon Elber, Technion 40

Conic Arcs as Rational Functions

One possible solution for r1(t), r2(t) is

and                          :

or 1 is verified. 2 and 3 are trivial to verify as well.
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Conic Arcs as Rational Functions

Then,

Hence, every conic section can be written as a rational 

quadratic parametric function.
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)2/cos(

1

)2/cos( 
====

i

i

ci

i

ii

i

i
TA

TA

PA

TA

PA

TA
r

)2/(cos

1
2212

21


=== rr

w

ww
K

Example 3.19 (Arc of a circle)

Assume a circle of radius r spanning  degs.  For ri = 1,2,

Thus,

Question:  What will be the effect, if

any, of w1  w1 ,  w2  w2 /?
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Homogeneous Coordinates

The rational form of quadratics equals,

Let  1(t) = (b - t)
2
,  2(t) = 2(t - a)(b - t),  3(t) = (t - a)

2
. Then,
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