Computer Aided Geometric Desig C Sect

OGershon Elber, Technion based on a book by Cohen, Riesenfeld, & Elber

כ"ט/חשון/תשפ"ב

Definition 3.1 (The Circle)

Given a point *C* in a plane and a number $R \ge 0$, the **circle** with center *C* and radius *R* is defined as the set of all points

in the plane at distance R from the

point C. In set notation we write,

$$\{ P = (x, y) : // P - C // = R \}$$

Definition 3.2 (The Ellipse)

Given two points, F_1 and F_2 called the **foci** and a number $K \ge || F_1 - F_2 ||$, an **ellipse** is defined as the set of all points the sum of whose distances from the foci *K*. That is,

{ $P = (x, y) : // P - F_1 // + // P - F_2 // = K$ }.

The Ellipse

The axis containing the foci is called the major axis of the ellipse and the axis orthogonal to the major axis through the center, $C = (F_1 + F_2)/2$, is denoted the minor axis.

If center C is at some location $C = (c_x, c_y)$ the ellipse equals,

$$1 = \frac{(x - c_x)^2}{a^2} + \frac{(y - c_y)^2}{b^2}.$$

כ"ט/חשון/תשפ"ב

Definition 3.3 (The Hyperbola)

Given two points, F_1 and F_2 called the **foci** and a number $K \neq 0$, a **hyperbola** is defined as the set of all points the **difference** of whose distances from the foci *K*. That is,

{ $P = (x, y) : // P - F_1 // - // P - F_2 // = \pm K$ }.

Question: What if K = 0?

כ"ט/חשון/תשפ"ב

The Hyperbola

The axis containing the foci is called the major axis of the hyperbola and the axis orthogonal to the major axis through the center, $C = (F_1 + F_2) / 2$, is denoted the minor axis.

If center C is at some location $C = (c_x, c_y)$ the hyperbola equals,

$$1 = \frac{(x - c_x)^2}{a^2} - \frac{(y - c_y)^2}{b^2} \quad \text{or} \quad 1 = \frac{(y - c_y)^2}{a^2} - \frac{(x - c_x)^2}{b^2}.$$

כ"ט/חשון/תשפ"ב

Definition 3.4 (The Parabola)

Given a fixed point *F* called the **focus** and a fixed line called the **directrix**, the set of points equidistant (bisector) from *F* and the **directrix** is called a **parabola**.

The Parabola

Let the **directrix** be the line x = -c and assume F = (c, 0). Then,

 $x \equiv -c$

$$x+c=\sqrt{(x-c)^2+y^2},$$

and by squaring the expression,

$$\underline{x^{2}} + 2xc + \underline{c^{2}} = \underline{x^{2}} - 2xc + \underline{c^{2}} + y^{2}$$
$$4xc = y^{2}.$$

© Gershon Elber, Technion

(c, 0)

Consider the cone $z^2 = m^2(x^2 + y^2)$,

where *m* is a real number.

Question: What is the affect of *m*?

Question: What is the shape of a

Plane-Cone intersection?

Consider the plane x = k. Then, $z^2 = m^2(k^2 + y^2)$, or $y^2 = z^2/m^2 - k^2$. If k = 0, $z = \pm my$, or Two Lines . $k \neq 0$, $\frac{z^2}{m^2k^2} - \frac{y^2}{k^2} = 1$, or a Hyperbola

Question: What are the foci of the hyperbola?

כ"ט/חשון/תשפ"ב

$$z^2 = m^2(x^2 + y^2)$$

Consider the plane z = b. Then, $b^2/m^2 = x^2 + y^2$, or a **circle**. **Question**: What if b = 0?

Consider the plane z = ax + b,

 $a \neq 0$. Then, $m^{2}(x^{2} + y^{2}) = (ax + b)^{2}$ $= a^{2}x^{2} + 2abx + b^{2}$,

or,

$$m^2 y^2 = (a^2 - m^2)x^2 + 2abx + b^2.$$

$$z^2 = m^2(x^2 + y^2)$$

Conic Sections $m^2 y^2 = (a^2 - m^2)x^2 + 2abx + b^2$.

If $a = \pm m$, then the intersection curve equals $m^2 y^2 = 2abx + b^2$ or, $y^2 = \frac{2abx}{m^2} + \frac{b^2}{m^2}$, a **Parabola**.

Question: What if b = 0?

$$m^{2}y^{2} = (a^{2} - m^{2})x^{2} + 2abx + b^{2}.$$

If $a^2 < m^2$ then let $r^2 = m^2 - a^2$ and $m^2 y^2 = -((m^2 - a^2)x^2 - 2abx) + b^2$ $= -(r^2 x^2 - 2abx) + b^2$,

and by completing the square,

$$m^{2}y^{2} = -\left(rx - \frac{ab}{r}\right)^{2} + \left(\frac{ab}{r}\right)^{2} + b^{2}$$

Multiplying by
$$r^2 = m^2 - a^2$$
,
 $r^2m^2y^2 + (r^2x - ab)^2 = a^2b^2 + r^2b^2$
 $= b^2m^2$,

and dividing by b^2m^2 ,

כ"ט/חשון/תשפ"ב

$$m^2 y^2 = (a^2 - m^2)x^2 + 2abx + b^2$$

If $a^2 > m^2$ then let $r^2 = a^2 \cdot m^2$ and $m^2 y^2 = r^2 x^2 + 2abx + b^2$ $= \left(rx + \frac{ab}{r}\right)^2 + b^2 - \left(\frac{ab}{r}\right)^2$

and by multiplying by r^2 ,

$$(r^{2}x+ab)^{2}-r^{2}m^{2}y^{2}=b^{2}m^{2}.$$

כ"ט/חשון/תשפ"ב

$$(r^2x + ab)^2 - r^2m^2y^2 = b^2m^2$$
.
If $b = 0$, either $x = \pm my/r$ or
we have **Crossing lines**.
Otherwise, $b \neq 0$, divide by b^2m^2

$$\frac{\left(x + \frac{ab}{a^2 - m^2}\right)^2}{\frac{b^2 m^2}{(2 - m^2)^2}} - \frac{y^2}{\frac{b^2}{2 - m^2}} = 1$$

 \boldsymbol{a}

כ"ט/חשון/תשפ"ב

© Gershon Elber, Technion

M

Implicit Quadratic Functions as Conics

We have seen that all **conic sections** are **quadratic implicit** forms.

Question: Are all **quadratic implicit** forms **conic sections**?

Implicit Quadratic Functions as Conics

Consider the general quadratic implicit form of

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

Question: Is there a change of basis from (x, y) to (x', y') such that the **same graph** is drawn by the curve,

$$A'x'^{2} + C'y'^{2} + D'x' + E'y' + F' = 0?$$

Definition 3.7

For the quadratic equation:

 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$,

the quantity B^2 - 4AC, is called the **discriminant**.

Theorem 3.8

The **discriminant** is invariant under rotations.

כ"ט/חשון/תשפ"ב

Theorem 3.9

Every implicit quadratic is a conic section and

if $B^2 - 4AC \begin{cases} < 0, & \text{the curve is an ellipse,} \\ = 0, & \text{the curve is a parabola,} \\ > 0, & \text{the curve is a hyperbola.} \end{cases}$

Proof

Since the discriminant is invariant under rotations, rotate through the special angle θ so that B'=0 in the new rotated coordinate system. Then, $B^2 - 4AC = B'^2 - 4A'C' = -4A'C'.$

כ"ט/חשון/תשפ"ב

Theorem 3.10

An implicit function f(x, y) = 0 is a conic section if and only if f is a second degree polynomial in x and y.

Question: How can we intuitively construct conic sections?

כ"ט/חשון/תשפ"ב

5 Points Construction

Question: How many degrees of freedom does the quadratic equation of $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ have?

These degrees of freedom can be prescribed using five points (x_i, y_i) : $Ax_1^2 + Bx_1y_1 + Cy_1^2 + Dx_1 + Ey_1 + F = 0$ $Ax_2^2 + Bx_2y_2 + Cy_2^2 + Dx_2 + Ey_2 + F = 0$ $Ax_3^2 + Bx_3y_3 + Cy_3^2 + Dx_3 + Ey_3 + F = 0$ $Ax_4^2 + Bx_4y_4 + Cy_4^2 + Dx_4 + Ey_4 + F = 0$ $Ax_5^2 + Bx_5y_5 + Cy_5^2 + Dx_5 + Ey_5 + F = 0$

Or in matrix form,

$$\begin{bmatrix} x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \\ E \\ F \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ E \\ F \end{bmatrix}$$

Questions: What is missing here?

כ"ט/חשון/תשפ"ב

Seeking a more intuitive approach, consider the four lines through the four given points,

 L_1 through P_1 and P_2 L_2 through P_3 and P_4 L_3 through P_2 and P_3 L_4 through P_4 and P_1

Let $L_i(x, y) = a_i x + b_i y + c_i$. Then, $L_1(P_j) = 0$ for j = 1,2 $L_2(P_j) = 0$ for j = 3,4 $L_3(P_j) = 0$ for j = 2,3 $L_4(P_j) = 0$ for j = 4,1

Let $L_i(x, y) L_j(x, y) = (a_i x + b_i y + c_i) (a_j x + b_j y + c_j).$

Observation: $L_i(x, y) L_j(x, y)$ is a quadratic equation in *x* and *y*.

Observation: $L_1 L_2 (P_j), j = 1, 2, 3, 4$ equal zero!

Now consider the surface (c constant),

 $z = f(x, y) = L_1 L_2(x, y) + c L_3 L_4(x, y).$

Question: To what is $f(P_j)$, j = 1,2,3,4 equal?

כ"ט/חשון/תשפ"ב

 $z = f(x, y) = L_1 L_2(x, y) + c L_3 L_4(x, y).$

5 Points Construction (Cont.)

Question: How can we prescribe *c*? Define a fifth point, P_5 , and ensure that $f(P_{5}) = 0$ $= L_1 L_2 (P_5) + c L_3 L_4 (P_5).$ or, $c = -\frac{L_1(P_5)L_2(P_5)}{L_3(P_5)L_4(P_5)}.$

Using Tangents

Let $L_3 \equiv L_4$ and hence $f(x, y) = L_1 L_2 + c L_3^2$

Question: What does the shape of f(x, y) look like?

 P_5 is denoted the shoulder point: $M = (P_1 + P_4) / 2$, and the ρ -conic equals $\rho = ||P_5 - M|| / ||T - M||$.

Using Tangents

 $P_{5} = (1 - \rho)M + \rho T.$ Then the conic is a $\begin{cases} Parabola, & \text{if } \rho = \frac{1}{2}, \\ Hyperbola, & \text{if } \rho > \frac{1}{2}, \\ Ellipse, & \text{if } \rho < \frac{1}{2}. \end{cases}$

Assume *T*, *P*₁, and *P*₂ are not on the same line. Then, $\{U = P_1 - T, V = P_2 - T\}$ spans the *XY* plane. Every point in the *XY* plane can be written as

 $(u, v) = T + u(P_1 - T) + v(P_2 - T).$

Question: Is this coordinate system rigid-motion invariant?

$$x_{0} = T_{x} + u(P_{1,x} - T_{x}) + v(P_{2,x} - T_{x}),$$

$$y_{0} = T_{y} + u(P_{1,y} - T_{y}) + v(P_{2,y} - T_{y}).$$

Question: What are the (u, v) coordinates of the $\overline{TP_1}$ line? The $\overline{TP_2}$ line? The $\overline{P_1P_2}$ line?

$$L_1: v = 0, L_2: u = 0,$$

 $L_3: u+v-1=0.$

$$\begin{split} \boldsymbol{L_1} &: T + u \left(P_1 - T \right) = (1 - u) T + u P_1, \\ \boldsymbol{L_2} &: T + v \left(P_2 - T \right) = (1 - v) T + v P_2, \\ \boldsymbol{L_3} &: T + u \left(P_1 - T \right) + (1 - u) \left(P_2 - T \right) = u P_1 + (1 - u) P_2. \end{split}$$

In *uv* coordinates we have $0 = L_1 L_2 + c L_3^2$ $= uv + c (u + v - 1)^2.$ Setting $c = -\lambda/(1 - \lambda)$, one gets $C(u, v) = (1 - \lambda)uv - \lambda(u + v - 1)^2 = 0.$

For $0 \le \lambda \le 1$, and $0 \le u$, *v* such that $u + v \le 1$, C(u, v) = 0 is **inside** the triangle P_1TP_2 .

Consider a point P_c on C(u, v) = 0, $P_c = (u_c, v_c)$.

כ"ט/חשון/תשפ"ב

$$A_{1} = \left[\frac{1}{(1-\lambda)v_{c} - 2\lambda(u_{c} + v_{c} - 1)}, 0\right]$$
Conic Arcs as Rational Functions

כ"ט/חשון/תשפ"ב

© Gershon Elber, Technion

 $2\lambda(u + v - 1)$

$$r_{1} = \frac{-2\lambda(u_{c} + v_{c} - 1)}{(1 - \lambda)v_{c}}, \quad r_{2} = \frac{-2\lambda(u_{c} + v_{c} - 1)}{(1 - \lambda)u_{c}}$$

And consider the product of these two ratios

$$r_1 r_2 = \frac{4\lambda^2 (u_c + v_c - 1)^2}{(1 - \lambda)^2 u_c v_c}$$

On a point (u_c, v_c) , in curve C(u, v), $(1-\lambda)uv = \lambda(u+v-1)^2$ or $\frac{1-\lambda}{\lambda} = \frac{(u_c + v_c - 1)^2}{u_c v_c}$ and $r_1 r_2 = \frac{4\lambda^2}{(1-\lambda)^2} \frac{1-\lambda}{\lambda} = \frac{4\lambda}{1-\lambda}$.

Theorem 3.13

If P_1 , T, P_2 , A_1 and A_2 are as above, then the product of the ratios

 $r_1 r_2 = \frac{\|TA_1\| \|TA_2\|}{\|A_1P_1\| \|A_2P_2\|} = \frac{uv}{(1-u)(1-v)}$

is a constant for the whole conic section.

כ"ט/חשון/תשפ"ב

Conic Arcs as Rational Functions $r_1 + r_2 + r_1 r_2 \frac{1-\lambda}{2\lambda}$

Because
$$r_1 r_2 = \frac{4\lambda}{1-\lambda}$$
, we have,

$$u_c = \frac{r_1}{r_1 + r_2 + 2}$$
 and similarly $v_c = \frac{r_2}{r_1 + r_2 + 2}$.

© Gershon Elber, Technion

 $u_c =$

Going back to the conic curve, we have

$$\gamma = T + u_c (P_1 - T) + v_c (P_2 - T)$$

$$= T + \frac{r_1}{r_1 + r_2 + 2} (P_1 - T) + \frac{r_2}{r_1 + r_2 + 2} (P_2 - T)$$

= $\frac{r_1 P_1 + 2T + r_2 P_2}{r_1 + 2 + r_2 P_2}$.

כ"ט/חשון/תשפ"ב

© Gershon Elber, Technion

38

$\gamma = \frac{r_1 P_1 + 2T + r_2 P_2}{r_1 + 2 + r_2}.$ Conic Arcs as Rational Functions

In order to parameterize γ as a rational form $\gamma(t)$, $t \in (a, b)$, r_1 and r_2 must satisfy the following constraints,

- 1. $r_1 r_2 = k$, $k = 4\lambda/(1-\lambda)$ constant.
- 2. $r_1(t), r_2(t) \text{ map } (a, b) \text{ to } (0, \infty) \text{ and } (\infty, 0).$
- 3. $r_1(t)$, $r_2(t)$ must be monotone for $t \in (a, b)$.

Question: Why $r_1(t)$, $r_2(t)$ map to $(0, \infty)$? Why is there a monotonicity constraint?

כ"ט/חשון/תשפ"ב

One possible solution for $r_1(t)$, $r_2(t)$ is $r_1(t) = \frac{w_1(b-t)}{w(t-a)}$ and $r_2(t) = \frac{w_2(t-a)}{w(b-t)}$: $K = \frac{4\lambda}{1-\lambda} = r_1(t)r_2(t)$ $=\frac{w_{1}(b-t)}{w(t-a)}\frac{w_{2}(t-a)}{w(b-t)}$ $=\frac{w_1w_2}{w_2^2}.$ or 1 is verified. 2 and 3 are trivial to verify as well.

כ"ט/חשון/תשפ"ב

Then,

$$\gamma(t) = \frac{r_1 P_1 + 2T + r_2 P_2}{r_1 + 2 + r_2} = \frac{\frac{w_1(b-t)}{w(t-a)} P_1 + 2T + \frac{w_2(t-a)}{w(b-t)} P_2}{\frac{w_1(b-t)}{w(t-a)} + 2 + \frac{w_2(t-a)}{w(b-t)}}$$

$$=\frac{w_1(b-t)^2P_1+2w(t-a)(b-t)T+w_2(t-a)^2P_2}{w_1(b-t)^2+2w(t-a)(b-t)+w_2(t-a)^2}.$$

Hence, every conic section can be written as a rational quadratic parametric function.

כ"ט/חשון/תשפ"ב

Example 3.19 (Arc of a circle)

Assume a circle of radius r spanning α degs. For $r_i = 1,2$,

$$r_{i} = \frac{\|TA_{i}\|}{\|A_{i}P_{i}\|} = \frac{\|TA_{i}\|}{\|A_{i}P_{c}\|} = \frac{\|TA_{i}\|}{\|TA_{i}\|\cos(\theta/2)} = \frac{1}{\cos(\theta/2)}$$

Thus,

$$K = \frac{w_1 w_2}{w^2} = r_1 r_2 = \frac{1}{\cos^2(\theta / 2)}$$

Question: What will be the effect, if any, of $w_1 \leftarrow w_1 \alpha$, $w_2 \leftarrow w_2/\alpha$?

Homogeneous Coordinates

The rational form of quadratics equals,

$$\gamma(t) = \frac{w_1(b-t)^2 P_1 + 2w(t-a)(b-t)T + w_2(t-a)^2 P_2}{w_1(b-t)^2 + 2w(t-a)(b-t) + w_2(t-a)^2}$$

Let $\theta_1(t) = (b - t)^2$, $\theta_2(t) = 2(t - a)(b - t)$, $\theta_3(t) = (t - a)^2$. Then,

$$\gamma(t) = \frac{w_1 P_1 \theta_1(t) + w T \theta(t) + w_2 P_2 \theta_2(t)}{w_1 \theta_1(t) + w \theta(t) + w_2 \theta_2(t)}$$

$$\equiv (w_1 P_1, w_1) \theta_1(t) + (w T, w) \theta(t) + (w_2 P_2, w_2) \theta_2(t).$$

כ"ט/חשון/תשפ"ב