Computer Aided Geometric Design

The Bézier curve-curve intersection problem

- How the geometric properties of Bézier curves are used in CCI solving
The convex hull property

Recall: a Bézier curve is contained inside the convex hull of its control mesh.
The convex hull property

Recall: a Bézier curve is contained inside the convex hull of its control mesh
The convex hull property

Useful for non-intersection testing:
For curves $c_1(t), c_2(r)$, if the convex hulls of control meshes of c_1 and c_2 are disjoint, then c_1 and c_2 do not intersect.
The convex hull property

If the convex hulls of the control meshes do intersect then c_1 and c_2 may intersect. How many times?
Testing for multiple intersections

The hodograph of \(c(t) \) is the curve of tangent directions of \(c \). Equals to \(c'(t) \).

Bound the set of tangent directions in a pair of cones.
Testing for multiple intersections

The **hodograph** of \(c(t) \) is the curve of tangent directions of \(c \). Equals to \(c'(t) \).

Bound the set of tangent directions in a pair of cones.
Testing for multiple intersections

The **hodograph** of $c(t)$ is the curve of tangent directions of c. Equals to $c'(t)$.

Bound the set of tangent directions in a **pair of cones**.
Testing for multiple intersections

If we position the pair of cones on any point on \(c(t) \), the entire curve will be contained in the cones.

Proof: Position cones at \(c(t_0) \) and assume (falsely) \(c(t_1) \) is outside the cones.

- There is \(t_2 \) such that \(\pm c'(t_2) = c(t_1) - c(t_0) \).

But the cones where constructed such that they contain all of \(c'(t) \) (including \(c'(t_2) \)). This is a contradiction. ■
Testing for multiple intersections

According to this theorem, if the cones of tangent directions of \(c_0 \) and \(c_1 \) do not overlap (except for the apex), then \(c_0 \) and \(c_1 \) intersect at most once.
Intermediate summary

- Convex hull test for discriminating between cases where the curves have no intersections vs. may have intersections.
- Cones of tangent directions test for discriminating between cases where the curves have at most one intersection vs. may any number of intersections.
CCI solution complete algorithm

- Convex hull test
 - No intersections
 - Stop (no intersections)
 - May intersect
 - At most one intersection
 - Try solving numerically
 - Fail
 - Subdivide
 - Any number of intersections
 - Stop and return result
 - Succeed
 - Stop and return result
 - Tangent cones test
 - May intersect
 - At most one intersection
 - Try solving numerically
 - Fail
 - Subdivide
 - Any number of intersections
 - Stop and return result
 - Succeed
 - Stop and return result