Bézier 2 B-spline

- A single Bézier curve can clearly be represented as a single Bspline curve
- Can a single B-spline curve be represented as a single Bézier curve ? Always ? Sometimes ? Under what conditions ?
- Not always. B-spline curves are polynomials in parts. They posses finite continuity at the knots whereas Bézier curves have infinite continuity.
- Any B-spline curve that has the support domain with no interior knots can be represented as a simple Bézier curve

Bézier 2 B-spline

- A single Bézier curve can clearly be represented as a single Bspline curve
- Can a single Bspline curve be represented as several Bézier curve ? Always ? Sometimes ? Under what conditions ?
- Yes.
- Assume the interior knots of $\gamma(t)=\sum_{i=0}^{n} P_{i} B_{i, k}(t)$ are $\tau=\left(\tau_{0}, \tau_{1}, \ldots, \tau_{m}\right)$ with multiplicities $\mu_{0}, \mu_{1}, \ldots, \mu_{m}$. Assume open end conditions.

Bézier 2 B-spline

- We perform knots insertion of each knot τ_{i} of which its multiplicity is less then k, by inserting new knots of $k+1$ consecutive control points as a control polygon at a new Bézier curve .
- Question: What if the B-spline curve is not open end ?

Bézier 2 B-spline

- Let $C(t)=\sum_{i=0}^{2} P_{i} B_{i, 2}(t)$ be a quadratic Bézier curve.
- What would be the control points of the two curves $C_{1}(t)=\sum_{i=0}^{2} Q_{i} B_{i, 3}(t)$ and $C_{2}(t)=\sum_{i=0}^{2} R_{i} B_{i, 3}(t)$ for $C(t)$ subdivided at $1 / 3$?
- Assume $C(t)=D(t)=\sum_{i=0}^{2} P_{i} B_{i, 3, \tau}(t)$ are defined over the knot sequence $\tau=\{0,0,0,1,1,1\}$. Show the new control points of $D(t)$ after a single knot insertion of knot $1 / 3$, after a double knot insertion of $1 / 3$, and after a triple knot insertion of $1 / 3$. What is the connection to the subdivision of the Bézier curve in the previous section?

Bézier 2 B-spline

- Let $C(t)=\sum_{i=0}^{2} P_{i} B_{i, 2}(t)$ be a quadratic Bézier curve.
- What would be the control points of the two curves $C_{1}(t)=\sum_{i=3}^{2} Q_{i} B_{i, 2}(t)$ and $C_{2}(t)=\sum_{i=0}^{2} R_{i} B_{i, 3}(t)$ for $C(t)$ subdivided at $1 / 3$?

$$
\begin{array}{ll}
Q_{0}=P_{0} & R_{0}=\frac{4 P_{0}+4 P_{1}+P_{2}}{9} \\
Q_{1}=\frac{2 P_{0}+P_{1}}{3} & R_{1}=\frac{2 P_{1}+P_{2}}{3} \\
Q_{2}=\frac{4 P_{0}+4 P_{1}+P_{2}}{9} & R_{2}=P_{2}
\end{array}
$$

Bézier 2 B-spline

- Let $C(t)=\sum_{i=0}^{2} P_{i} B_{i, 2}(t)$ be a quadratic Bézier curve.
- Assume $C(t)=D(t)=\sum_{i=0}^{2} P_{i} B_{i, 3, \tau}(t)$ are defined over the knot sequence $\tau=\{0,0,0,1,1,1\}$. Show the new control points of $D(t)$ after a single knot insertion of knot $1 / 3$, after a double knot insertion of $1 / 3$, and after a triple knot insertion of $1 / 3$. What is the connection to the subdivision of the Bézier curve in the previous section?

Bézier 2 B-spline

$$
Q_{0}=P_{0}
$$

$$
R_{0}=P_{0}
$$

$$
Q_{1}=\frac{2 P_{0}+P_{1}}{3}
$$

$$
R_{1}=\frac{2 P_{0}+P_{1}}{3}
$$

$$
Q_{2}=\frac{2 P_{1}+P_{2}}{3}
$$

$$
R_{2}=\frac{4 P_{0}+4 P_{1}+P_{2}}{9}
$$

$$
Q_{3}=P_{2}
$$

$$
R_{3}=\frac{2 P_{1}+P_{2}}{3}
$$

$$
R_{4}=P_{2}
$$

$$
\begin{aligned}
& S_{0}=P_{0} \\
& S_{1}=\frac{2 P_{0}+P_{1}}{3} \\
& S_{2}=\frac{4 P_{0}+4 P_{1}+P_{2}}{9} \\
& S_{3}=\frac{4 P_{0}+4 P_{1}+P_{2}}{9} \\
& S_{4}=\frac{2 P_{1}+P_{2}}{3}
\end{aligned}
$$

$$
S_{5}=P_{2}
$$

- Although the multiplicity of $1 / 3$ is 3 there is one double point $S_{2}=S_{3}$.

Bézier 2 B-spline

