
Kinematics of linkages

“Computer Aided Geometric Design” 

Final Presentation 

1



Agenda

• Introduction to mechanisms

• Mapping of the motion into algebraic constraints.

• Examples of linkages

• Major research and development
• “Geometric Constraint Solver using

Multivariate Rational Spline Functions” Gershon Elber, Myung-Soo Kim.

• “Solving Piecewise Polynomial Constraint Systems with Decomposition and a 
Subdivision-Based Solver” Boris van Sosin and Gershon Elber.

• “Precise contact motion planning for deformable planar curved shapes” Yong-
Joon Kim, Gershon Elber, Myung-Soo Kim.

1



Introduction to mechanisms

3



Kinematic Mechanism

• A mechanism is a device to transform one motion into 
another.

• Comprised of rigid bodies connected such that each 
one moves with respect to another.

• The connection is a joint between two members 
permitting a particular kind of motion.

• The joints between links are modeled as providing 
ideal movement, pure rotation or sliding.
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source: 
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Mapping of the motion into 
algebraic constraints.
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Representation of a Mechanism

• A kinematic mechanism M = { E, C }, contains:

• E - a set of elements from which the mechanism is 

built.

• C - a set of constraints among the element.

• Under motion of the mechanism, the constraints C 

should be preserved.
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The elements of a mechanism

• The basic build block of the mechanism is a 2D or a 3D 
point.

• The point types:

• An anchored point - point that lies fixed and does not 
change its position during the motion.

• Point on a Curve - point that can move while its 
trajectory is constrained to a curve. 

• Point on a Surface - point that can move while its 
trajectory is constrained to be on a surface.

• A free point - point that can move in any direction.

• Kinematic bars and kinematic faces are defined as pairs 
and triplets of kinematic points, respectively.

1
source: source:Kinematic Simulation of Planar and Spatial Mechanisms using a polynomial constraint solver" Michael Barton, Nadav 

Shragai, Gershon Elber.



The Constraints in a Mechanism

• Distance Constraints: 

Point-point 
(black bar) Point-bar

Bar- bar
Point-curve

Point-surface Bar- curve Bar-surface

1source: source:Kinematic Simulation of Planar and Spatial Mechanisms using a polynomial constraint solver" Michael Barton, Nadav 
Shragai, Gershon Elber.



The Constraints in a Mechanism

• Angular Constraints: 
• bar-bar 

• bar-plane,

• Tangency:
• bar--curve

• bar—surface

• face-surface

• Parallelism
• Bar-bar

1
source: source:Kinematic Simulation of Planar and Spatial Mechanisms using a polynomial constraint solver" Michael Barton, Nadav 

Shragai, Gershon Elber.



• Distance preserving constraints d between points P and Q

• 𝑃 − 𝑄
2
− 𝑑2 = 0

• Angle constraints between two bars PQ and RT

•
𝑃−𝑄,𝑅−𝑇 2

𝑃−𝑄
2

𝑅−𝑇
2 − cos2(𝛼) = 0

• Point-surface distance between point P and surface 𝑄 𝑢, 𝑣

•

𝑃 − 𝑄 − 𝑑2 = 0

𝜕𝑄

𝜕𝑢
, 𝑃 − 𝑄 = 0

𝜕𝑄

𝜕𝑣
, 𝑃 − 𝑄 = 0

Examples

1source: source:Kinematic Simulation of Planar and Spatial Mechanisms using a polynomial constraint solver" Michael Barton, Nadav 
Shragai, Gershon Elber.



Examples of linkages
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• A planar four-bar linkage consists of four rigid rods in the plane 

connected by pin joints. We call the rods:

• Frame link: fixed to anchor pivots AA and BB.

• crank link: driven by input angle α.

• rocker link: gives output angle β.

• Rocker link: connects the two moving pins C and D

Four-bar linkage

frame

crank

coupler

rocker

1
source: 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fgfycat.com%2Ffrankyoungcaudata&psig=AOvVaw2udLiQPR2Q_vbv51dv9tzr&ust=1643015265560000&source=images&cd=vfe&ved=0CAsQjRx
qFwoTCJDn6_vCx_UCFQAAAAAdAAAAABAD, http://dynref.engr.illinois.edu/aml.html



• can be used for many mechanical purposes, for 
example:
• convert rotational motion to reciprocating motion. (e.g., 

pumpjack)

• convert reciprocating motion to rotational motion (e.g., 
bicycle)

• constrain motion (e.g., knee joint and suspension)

• magnify force (e.g., parrotfish jaw)

Four-bar linkage

1source: http://dynref.engr.illinois.edu/aml.html



Cognate Linkage

• linkages that ensure the same input-output 
relationship or coupler curve geometry, while 
being dimensionally dissimilar.

• Roberts–Chebyschev Theorem:
• each coupler curve can be generated by three 

different four-bar linkages. 
• Overconstrained mechanisms can be obtained by 

connecting two or more cognate linkages 
together.

1source: http://en.wikipedia.org/wiki/Cognate_linkage

http://en.wikipedia.org/wiki/Cognate_linkage


Chebyshev Linkage

• A mechanical linkage (4-bar) that converts rotational 
motion to approximate straight-line motion.

• invented by Pafnuty Chebyshev.

• Algebraic relation between the lengths:

• 𝐿4 = 𝐿3 + 𝐿2
2 − 𝐿1

2

• Lengths proportions:
• L1:L2:L3 = 4:5:2

• From the proportions and constraints it follows that:
• 𝐿2 = 𝐿4

1source: http://en.wikipedia.org/wiki/Chebyshev_linkage

http://en.wikipedia.org/wiki/Chebyshev_linkage


Chebyshev’s Lambda Mechanism

• A four-bar mechanism that converts rotational motion 

to approximate straight-line motion with approximate 

constant velocity.

• Cognate linkage of the Chebyshev linkage

1
source: http://en.wikipedia.org/wiki/Chebyshev's_Lambda_Mechanism



Jansen Linkage

• A planar leg mechanism

• Designed by the kinetic sculptor Theo Jansen

• Generates a smooth walking motion.

• One degree of freedom

• Applications in mobile robotics and in gait analysis

1
source: http://en.wikipedia.org/wiki/Jansen%27s_linkage

http://en.wikipedia.org/wiki/Jansen%27s_linkage


Jansen Linkage

1source: http://en.wikipedia.org/wiki/Jansen%27s_linkage

http://en.wikipedia.org/wiki/Jansen%27s_linkage


Pantograph 

• mechanical linkage connected in a manner based on parallelograms so that the 

movement of one pen, in tracing an image, produces identical movements in a 

second pen.

• If a line drawing is traced by the first point, an identical, enlarged, or miniaturized 

copy will be drawn by a pen fixed to the other. 

• Using the same principle, different kinds of pantographs are used for other forms 

of duplication in areas such as sculpture, minting, engraving, and milling.

1source:https://en.wikipedia.org/wiki/Pantograph



Major Research and development
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“Geometric Constraint Solver using
Multivariate Rational Spline Functions” 

Gershon Elber, Myung-Soo Kim
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The problem

• given n multivariate piecewise rational constraints

𝐹𝑖 𝑢1, … 𝑢𝑚−1 = 0, 𝑖 = 1,… , 𝑛

• We seek all 𝑢𝑠 ∈ ℝ𝑚−1, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹𝑖 𝑢
𝑠 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… , 𝑛

• The 𝐹𝑖
′𝑠 are represented as B-splines or Bezier multivariates scalar 

surfaces.

• Inequalities 𝐹𝑖 𝑢1, … 𝑢𝑚−1 > 0 are also supported.

1
source: “Geometric Constraint Solver using

Multivariate Rational Spline Functions” Gershon Elber, Myung-Soo Kim



The convex-Hull test

• The convex-Hull property states that a Bézier curve is contained inside 
the convex hull of its control mesh.

• By the convex-hull property, the domain of 𝐹𝑖(u) contains zeros only 
if the control coefficients of 𝐹𝑖 have different signs.

1
source: “Geometric Constraint Solver using

Multivariate Rational Spline Functions” Gershon Elber, Myung-Soo Kim



The uniqueness test

• Bound the set of tangent directions in a pair of cones.

• If we position the pair of cones on any point on 𝑐, the entire curve will 
be contained in the cones.

• if the cones of tangent directions of 𝑐0 and 𝑐1 do not overlap (except 
for the apex), then 𝑐0 and 𝑐1 intersect at most once.

• Can be extended multivariates.

1source: “Geometric Constraint Solver using
Multivariate Rational Spline Functions” Gershon Elber, Myung-Soo Kim



The solver 

• subdivision based. 
• For each sub-domain:

• The convex-hull test is performed: if all the control points have the same sign, the 
solution is not in the sub-domain and the sub-domain is trimmed from the search 
domain.

• The uniqueness test is performed: if there is a unique solution, the subdivision stops 
and a numerical procedure is operated. the segment is numerically traced up to a 
user defined accuracy.

• Otherwise, the subdomain 𝐷 ∈ ℝ𝑛 is recursively divided until a condition for the 
existence of a single univariate solution segment can be met. 

• At the end it generates a set of discrete points which are the simultaneous 
zero-set of 𝐹𝑖.

• Can support inequality constraints by checking if the control points have 
the same signs as the constraint.

1
source: “Geometric Constraint Solver using

Multivariate Rational Spline Functions” Gershon Elber, Myung-Soo Kim



“Solving Piecewise Polynomial Constraint 
Systems with Decomposition and a 

Subdivision-Based Solver” Boris van Sosin
and Gershon Elber.
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Motivation 

• Constraint systems are used in all computational geometry and CAD 
systems.

• In many applications, geometric constraint systems can get very 
complicated.

• Even a constraint as simple as a Euclidean distance between two points is 
quadratic

• Therefore, most applications require numerical solvers for constraints 
systems. 

• The time it takes for most constraint systems solvers to run scales non-
linearly, even exponentially, with the size of the problem.

• Therefore, decomposing the problem into a series of sub-problems in 
sequence can be very effective at speeding up the solution process.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



The problem

• Solving non-linear constraint systems by decomposing them into 
subsystems.

• Each sub-system is solved by using a subdivision-based polynomial 
solver.

• The input constraint system:
• represented as Bezier or B-spline multivariate functions.
• with DOF=0 or DOF=1 
• Contains equality and inequality constraints.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Algebraic representation of the constraints

• Constraints can be expressed in algebraic form as equations.

• Two types:
• Zero constraints – have the form 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 0.

• Inequality constraints- usually have the form 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0

• The number of Zero constraints together with the number of 
variables determine the number of degrees of freedom of the system 
(DOF).

• Inequality constraints do not affect the total degrees of freedom of 
the system, but restrict the domain of the solution search.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Algebraic representation of the constraints

• All the constraints are represented as B-spline functions.

• Extended to multivariate as a tensor product:

• 𝑀 𝑡 = Σ𝑖0=0
𝑛0 Σ𝑖0=0

𝑛0 …Σ𝑖0=0
𝑛0 𝑃𝑖0,𝑖1,…𝑖𝑘−1 ς𝑗=0

𝑘−1𝐵
𝑖𝑗

𝑡𝑗 𝑡𝑗

• Where:

• 𝐵
𝑖𝑗

𝑡𝑗
- the B-spline basis functions of order 𝑞𝑗

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Constraint system

• A  Constraint system is  𝑀 = 𝑀𝑧𝑒𝑟𝑜 ∪𝑀𝑖𝑛𝑒𝑞

• where:

• 𝑀𝑧𝑒𝑟𝑜 =

𝑀0
𝑧𝑒𝑟𝑜 𝒕 = 0

𝑀1
𝑧𝑒𝑟𝑜 𝒕 = 0

⋮
𝑀𝑚−1

𝑧𝑒𝑟𝑜 𝒕 = 0

,𝑀𝑖𝑛𝑒𝑞 =

𝑀0
𝑖𝑛𝑒𝑞

𝒕 ≥ 0

𝑀1
𝑖𝑛𝑒𝑞

𝒕 ≥ 0
⋮

𝑀𝑝−1
𝑖𝑛𝑒𝑞

𝒕 ≥ 0

• 𝒕 = 𝑡0, 𝑡1, … 𝑡𝑘−1 the variables

• k  is number of variables

• 𝑚 > 0 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.

• 𝑝 ≥ 0 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Solution plan graph

• Let M be a constraint system with m zero constraints and k variables.

• A solution plan graph is a graph 𝐻𝑝𝑙𝑎𝑛 = (𝑉𝑝𝑙𝑎𝑛, 𝐸𝑝𝑙𝑎𝑛) with the 
following properties:
• 𝐻𝑝𝑙𝑎𝑛 is a DAG (directed acyclic graph)

• Each vertex 𝑣𝑖 ∈ 𝑉𝑝𝑙𝑎𝑛 represents a step in the solution plan with attached 
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑣𝑖 = 𝑀𝑗 𝑣𝑖

, the set of constraints of the subproblem solved in 

this step.

• For 𝑣𝑖 ≠ 𝑣𝑗, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑣𝑖 ∩ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑣𝑗 = 𝜙 and 
∪𝑣∈𝑉𝑝𝑙𝑎𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑣𝑖 = 𝑀.

• There is an edge 𝑣𝑖 → 𝑣𝑗 ∈ 𝐸𝑝𝑙𝑎𝑛 if the subproblem 𝑣𝑗 is dependent on 𝑣𝑖 .

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Variable-constraint graph

• A bipartite graph 𝐺 = (𝑉𝑣 ∪ 𝑉𝑀 , 𝐸) with the following properties:

1. 𝑉𝑣 = 𝑉𝑡𝑖 𝑖=0

𝑘−1
, a vertex for each variable 𝑡𝑖 in the vector 𝒕

2. 𝑉𝑀 = 𝑣𝑀𝑗 𝑗=0

𝑚−1
, a vertex for each constraint in 𝑀𝑧𝑒𝑟𝑜.

3. There is an edge 𝑣𝑡, 𝑣𝑀𝑗
∈ 𝐸 iff constraint 𝑀𝑗 is dependent on variable 𝑡𝑖.

1
source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Building of 𝐻𝑝𝑙𝑎𝑛 from G 

(1) Maximum 
matching

(4) Strongly 
connected 

components 
(SCC)

(3) condense 
G’

(2) Build G’

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Building the solution graph 𝐻𝑝𝑙𝑎𝑛 from the variable-
constraints graph  𝐺 = (𝑉𝑣 ∪ 𝑉𝑀, 𝐸)

1. Finding a maximum matching, 𝑀𝑚 in G

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Building the solution graph 𝐻𝑝𝑙𝑎𝑛 from the variable-
constraints graph  𝐺 = (𝑉𝑣 ∪ 𝑉𝑀, 𝐸)

2. Building a new directed graph 𝐺′ = (𝑉′, 𝐸′) where:
• 𝑉′ = 𝑉𝑣 ∪ 𝑉𝑀
• converting each of the matched edges into a pair of anti parallel 

directed edges. 

• All the unmatched edges are copied to G’ as directed edges from the 
variable vertices to the constraint vertices.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Building the solution graph 𝐻𝑝𝑙𝑎𝑛 from the variable-
constraints graph  𝐺 = (𝑉𝑣 ∪ 𝑉𝑀, 𝐸)

3. Condensing 𝐺′ to build H

by taking the set of vertices of G’ and connecting a pair of vertices 
𝑣𝑀𝑖

, 𝑣𝑀𝑗
by a directed edge 𝑣𝑀𝑖

→ 𝑣𝑀𝑗
iff in G’ there is a directed 

path from 𝑣𝑀𝑖
to 𝑣𝑀𝑗

going through a single variable vertex.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Building the solution graph 𝐻𝑝𝑙𝑎𝑛 from the variable-
constraints graph  𝐺 = (𝑉𝑣 ∪ 𝑉𝑀, 𝐸)

4. 𝐻𝑝𝑙𝑎𝑛 is the Strongly connected components (SCC) graph of H 
(without inequality constraints).

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Building the solution graph 𝐻𝑝𝑙𝑎𝑛 from the variable-
constraints graph  𝐺 = (𝑉𝑣 ∪ 𝑉𝑀, 𝐸)

5. Adding inequality constraints to 𝐻𝑝𝑙𝑎𝑛

The inequality constraints are added to the subsystems in which 
they can be solved.

Each inequality constraint 𝑀𝑖
𝑖𝑛𝑒𝑞

is added to the subsystem in 

which at least one of the variables on which 𝑀𝑖
𝑖𝑛𝑒𝑞

depends is 
being solved for, in the subsystem, and all the variables which are 
not being solved for in the current subsystem, already have 
solutions.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



The solution phase

• The subsystems in 𝐻𝑝𝑙𝑎𝑛 are solved in a topological order.

• Solving in topological order assuring that when a subsystem is solved, there are 
already values assigned to all the variables which are required to solve it.

• When the first subsystem is solved, the computed values are assigned to the 
variables in the subsystem.

• Zero dimensional or univariate assigned as a solution to a variable. 

• Univariate solutions need to be parameterized in order to have the same 
representation as the constraints for further processing. 

• The parametrization of univariate solutions is done either by parameterizing the 
piecewise-linear solutions directly, or by fitting a parametric curve (a B-spline 
curve) which approximates the piecewise-linear solution.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Solving the subsystems (vertices in 𝐻𝑝𝑙𝑎𝑛)

• For each subsystem, all the variables that already have solutions are 

applied to the constraints.

• For zero dimensional solutions, the constraints multivariates are 

reduced to iso-parametric sub-multivariate.

• For univariate solutions, symbolic composition of the univariate 

solution B-spline into the constraint multivariates is performed. 

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Symbolic composition of the univariate 
solution
• If the variable vector of the problem is 𝒕 = 𝑡0, 𝑡1, … , 𝑡𝑘−1 , and we 

have univariate solution for 𝑡0, … 𝑡𝑙−1, parameterized as 

𝑡0 𝑣 ,… 𝑡𝑙−1(𝑣), the constraint 𝑀𝑖 undergoes the composition: 

𝑀𝑖 𝜏 𝑣 , 𝑡1, … , 𝑡𝑘−1 = 𝑀𝑖,𝑐𝑜𝑚𝑝

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Results and examples
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Example – 2D point-and-bar problem

• Well-constrained system

• Algebraic representation:

• 𝑀𝑧𝑒𝑟𝑜 =

𝐴 − 𝑃0
2 − 𝑐0

2 = 0, 𝑐0 = 0.9

𝐴 − 𝑃1
2 − 𝑐1

2 = 0, 𝑐1 = 2.5

𝐴 − 𝐵 2 − 𝑐2
2 = 0, 𝑐2 = 2

𝐵 − 𝑃1
2 − 𝑐3

2 = 0, 𝑐3 = 0.9

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



2D point-and-bar problem

• First the subsystem {𝑐0, 𝑐1} is solved and finds 𝐴𝑥, 𝐴𝑦

(𝐴𝑥= −1.36, 𝐴𝑦 = 0.825)

{𝑐0, 𝑐1}

(𝐴𝑥= −1.36, 𝐴𝑦 = 0.825)

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



2D point-and-bar problem

• Next, the subsystem {𝑐2, 𝑐3} is solved and finds 𝐵𝑥 , 𝐵𝑦

(𝐴𝑥= −1.36, 𝐴𝑦 = 0.825)

{𝑐0, 𝑐1}

(𝐴𝑥= −1.36, 𝐴𝑦 = −0.825)

(𝐴𝑥, 𝐴𝑦, 𝐵𝑥, 𝐵𝑦)

= −1.36,0.825, 0.64, 0.825

(𝐴𝑥, 𝐴𝑦, 𝐵𝑥, 𝐵𝑦)

= −1.36,0.825, 0.205, −0.421 (𝐴𝑥, 𝐴𝑦, 𝐵𝑥, 𝐵𝑦)

= −1.36, −0.825, 0.205, 0.421
(𝐴𝑥, 𝐴𝑦 , 𝐵𝑥, 𝐵𝑦)

= −1.36,−0.825, 0.64, −0.825

1
source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



2D point-and-bar problem

• Next, the subsystem {𝑐2, 𝑐3} is solved and finds 𝐵𝑥 , 𝐵𝑦

(𝐴𝑥= −1.36, 𝐴𝑦 = 0.825)

{𝑐0, 𝑐1}

(𝐴𝑥= −1.36, 𝐴𝑦 = −0.825)

(𝐴𝑥, 𝐴𝑦, 𝐵𝑥, 𝐵𝑦)

= −1.36,0.825, 0.64, 0.825

(𝐴𝑥, 𝐴𝑦, 𝐵𝑥, 𝐵𝑦)

= −1.36,0.825, 0.205, −0.421 (𝐴𝑥, 𝐴𝑦, 𝐵𝑥, 𝐵𝑦)

= −1.36, −0.825, 0.205, 0.421
(𝐴𝑥, 𝐴𝑦 , 𝐵𝑥, 𝐵𝑦)

= −1.36,−0.825, 0.64, −0.825

{𝑐2, 𝑐3}
{𝑐2, 𝑐3}

1

source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



2D point-and-bar problem

• Adding inequality constraints to the system:

• 𝑀𝑖𝑛𝑒𝑞 = ൝
𝐴𝑦 ≥ 0

𝑧 𝐵 − 𝑝1 × 𝐴 − 𝑃1 ≥ 0

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



2D point-and-bar problem

• The constraint𝑧 𝐵 − 𝑝1 × 𝐴 − 𝑃1 ≥ 0 is added to the subsystem 𝑐2, 𝑐3

1
source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



2D point-and-bar problem

• The constraint 𝐴𝑦 ≥ 0 is added to the system 𝑐0, 𝑐1

1
source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



4-bar linkage problem

• under-constrained system

• same inequality constraints:

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



The Jansen’s linkage problem

• Decomposed into 6 subsystems.

• Found 38 solutions without inequalities.

• Added inequalities:

•

𝑃0 − 𝐵 × 𝐴 − 𝐵 ≥ 0

𝐴 − 𝐷 × 𝑃0 − 𝐷 ≥ 0

𝐶 − 𝐵 × 𝑃0 − 𝐵 ≥ 0

𝐸 − 𝐷 × 𝐹 − 𝐷 ≥ 0
𝐷 − 𝐸 × 𝐶 − 𝐸 ≥ 0

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



The kinematic over splines problem

• Fixed point 𝑃0, curves 𝑐1, 𝑐2, surface S.

• The variables:

• 𝐴 = 𝑐1 𝑡𝐴

• 𝐵 = 𝐵𝑥, 𝐵𝑦

• 𝐶 = 𝑐2 𝑡𝑐
• 𝐷 = 𝑐2 𝑡𝑑

• 𝐸 = 𝑆(𝑢𝐸 , 𝑣𝐸)

• The constraints:
𝐵 − 𝑃0

2 − 𝐿1
2 = 0

𝑐1 𝑡𝐴 − 𝐵 2 − 𝐿2
2 = 0

𝑐2 𝑡𝐶 − 𝐵 2 − 𝐿3
2 = 0

𝑐2 𝑡𝐷 − 𝐵 2 − 𝐿4
2 = 0

𝑐2 𝑡𝐶 − 𝑆 𝑢𝐸 , 𝑣𝐸
2 − 𝐿5

2 = 0

𝑐2 𝑡𝐷 − 𝑆 𝑢𝐸 , 𝑣𝐸
2 − 𝐿6

2 = 0

• Six constraints, 7 unknowns.

• Four disjoint solutions.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Inverse kinematics problem

• The tea pot is represented as 𝑆(𝑢, 𝑣)

• The letter “C” is represented as a planar curve 𝑐(𝑡)

• 𝑐(𝑡) is embedded in 𝑆(𝑢, 𝑣) by 𝑐𝑠 𝑡 = 𝑆 𝑐 𝑡

• Constraints:

•

𝑐𝑠 𝑡 − 𝐵 2 = 𝐿3
2

𝑆𝑢 𝑐 𝑇 , 𝐵 − 𝑐𝑠 𝑡 = 0

𝑆𝑣 𝑐 𝑇 , 𝐵 − 𝑐𝑠 𝑡 = 0

𝐵 − 𝐴 2 = 𝐿2
2

𝐴 − 𝑃0
2 = 𝐿1

2

𝑧 𝐵 − 𝐴 × 𝑃0 − 𝐴 = 0

• 𝐿𝑖 are constants, 𝑆𝑢 =
𝜕𝑆

𝜕𝑢
, 𝑆𝑣 =

𝜕𝑆

𝜕𝑣

• 6 constraints and 7 unknowns.

• Since the planar letter ‘‘C’’ is a quadratic curve, and the body of the teapot is a bi-cubic surface, the maximal polynomial orders of 
the first three constraints are 25, 23, and 23.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



Flecnodal curves

• A flecnodal curve is defined as a locus of all the points at which the surface has a 
third-order contact with a ray.

• S(u,v) is a 𝐶3 continuous surface.

• N(u,v) the unnormalized normal at u,v.

• The flecnodal curves of the surface are the solution to the following system:

• ൞

𝑎2𝑆𝑢𝑢 𝑢, 𝑣 + 2𝑎𝑏𝑆𝑢𝑣 𝑢, 𝑣 + 𝑏2𝑆𝑣𝑣 𝑢, 𝑣 , 𝑛(𝑢, 𝑣) = 0

𝑎3𝑆𝑢𝑢𝑢 𝑢, 𝑣 + 3𝑎2𝑏𝑆𝑢𝑢𝑣 𝑢, 𝑣 + 3𝑎𝑏2𝑆𝑢𝑣𝑣 𝑢, 𝑣 + 𝑏3𝑆𝑣𝑣𝑣(𝑢, 𝑣), 𝑛(𝑢, 𝑣) = 0

𝑎2 + 𝑏2 − 1 = 0

• The constraint 𝑎2 + 𝑏2 − 1 = 0 was solved first.

• The solution propagated into the first two constraints allowing them to be solved 
more efficiently.

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



performance

1source: “Solving Piecewise Polynomial Constraint Systems with Decomposition and a Subdivision-Based Solver” Boris van Sosin and Gershon Elber.



“Precise contact motion planning for 
deformable planar curved shapes” Yong-Joon 

Kim, Gershon Elber, Myung-Soo Kim.
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The problem

• Given a 𝐶1 continuous robot 𝜙𝑡 𝐶 𝑢 in parametric or implicit form

• And given parametric obstacles D(v), in the plane.

• 𝜙𝑡 is a one-parameter smooth freeform deformation of C(u)

• 𝜙𝑡 𝐶 𝑢 has:
• two translation DOF  (x,y) 

• one rotation DOF 𝜃

• One DOF t provides shape control over 𝜙𝑡

• Contact motion planning for the robot.

1source: “Precise contact motion planning for deformable planar curved shapes” Yong-Joon Kim, Gershon Elber, Myung-Soo Kim.



Deformable robots representation

• Two ways of prescribing the robot (a planar deforming shape).

• Parametric:
• 𝐶𝑖 𝑢𝑖 , 𝑖 = 1,2 , 𝑢𝑖 ∈ [0,1] two regular, smooth, parametric curves.

• 𝜙𝑡 𝐶 𝑢 = 1 − 𝑡 𝐶1 𝑢 + 𝑡𝐶2(𝑢) (Alternatively, 𝜙𝑡(𝐶 𝑢 ) can be 
any 𝑆(𝑢, 𝑡))

• Implicit:
• 𝐶𝑖 𝑥, 𝑦 , = 0 𝑖 = 1,2 two smooth implicit curves

• 𝜙𝑡 𝐶 𝑥, 𝑦 = 1 − 𝑡 𝐶1 𝑥, 𝑦 + 𝑡𝐶2( 𝑥, 𝑦 ) (Alternatively, can be 
any 𝑣 𝑥, 𝑦, 𝑡 = 0)

• The advantage is that it can change the topology

1source: “Precise contact motion planning for deformable planar curved shapes” Yong-Joon Kim, Gershon Elber, Myung-Soo Kim.



Algebraic condition for k-contact motion

• 𝜙𝑡 𝐶 𝑢
𝑥

, 𝜙𝑡 𝐶 𝑢
𝑦

𝐶1 continuous regular parametric curve.

• 𝐷 𝑣 = 𝐷 𝑣 𝑥 , 𝐷 𝑣 𝑦 stationary obstacle.

• Rigid transformation of 𝜙𝑡 𝑐(𝑢) : 𝑇 𝜙𝑡 𝑐(𝑢) = 𝑅𝜃 𝜙𝑡 𝑐(𝑢)
+ 𝑥, 𝑦

• The conditions for K-contact between 𝑇 𝜙𝑡 𝑐(𝑢𝑖) and 𝐷 𝑣𝑖 i=1,…k:
• 0 = 𝑅𝜃 𝜙𝑡 𝑐 𝑢

𝑥
+ 𝑥 − 𝐷 𝑣𝑖 𝑥

• 0 = 𝑅𝜃 𝜙𝑡 𝑐 𝑢
𝑦
+ 𝑦 − 𝐷 𝑣𝑖 𝑦

• 0 = 𝐹𝑖 𝑢𝑖 , 𝑣𝑖 , 𝜃, 𝑡 = 𝑅𝜃 𝜙𝑡 𝑐(𝑢) × 𝐷′(𝑣𝑖)

1source: “Precise contact motion planning for deformable planar curved shapes” Yong-Joon Kim, Gershon Elber, Myung-Soo Kim.



Algebraic condition for k-contact motion

• Isolating x and y:

• x = 𝐺𝑖 𝑢𝑖 , 𝑣𝑖 , 𝜃, 𝑡 = 𝐷 𝑣𝑖 𝑥 − 𝑅𝜃 𝜙𝑡 𝑐 𝑢
𝑥

• y = 𝐺𝑖 𝑢𝑖 , 𝑣𝑖 , 𝜃, 𝑡 = 𝐷 𝑣𝑖 𝑦 − 𝑅𝜃 𝜙𝑡 𝑐 𝑢
𝑦

• We can write:

• 0 = 𝐺1 𝑢𝑖 , 𝑣𝑖 , 𝜃, 𝑡 − 𝐺𝑖 𝑢𝑖 , 𝑣𝑖 , 𝜃, 𝑡 𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 𝑘

• 0 = 𝐻1 𝑢𝑖 , 𝑣𝑖 , 𝜃, 𝑡 − 𝐻𝑖 𝑢𝑖 , 𝑣𝑖 , 𝜃, 𝑡 𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 𝑘

• 0 = 𝐹𝑖 𝑢𝑖 , 𝑣𝑖 , 𝜃, 𝑡 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘

• Which is 3K-2 constraints in 2K+2 variables (𝑢𝑖 , 𝑣𝑖 , 𝜃, 𝑡)

1source: “Precise contact motion planning for deformable planar curved shapes” Yong-Joon Kim, Gershon Elber, Myung-Soo Kim.



• For k=2 we have 4 constraints in 6 

variables. If we fix t (i.e, rigid robot) we 

have 4 constraints and 5 variables. 

Therefore 1 degree of freedom.

• For k=3 we have 7 constraints in 8 

variables. Therefore, 1 degree of 

freedom.

Degrees of freedom

1source: “Precise contact motion planning for deformable planar curved shapes” Yong-Joon Kim, Gershon Elber, Myung-Soo Kim.



The K-contact motion graph

• Consists of 2 or 3 contact motions.

• Fixing 𝑡 = 𝑡∗

1source: “Precise contact motion planning for deformable planar curved shapes” Yong-Joon Kim, Gershon Elber, Myung-Soo Kim.



Disconnected components

1source: “Precise contact motion planning for deformable planar curved shapes” Yong-Joon Kim, Gershon Elber, Myung-Soo Kim.



3 – contact graph

1source: “Precise contact motion planning for deformable planar curved shapes” Yong-Joon Kim, Gershon Elber, Myung-Soo Kim.


