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Based on Cohen, Riesenfel and Elber book [1]. 



Trivariate Tensor Product

Definition:

Consider F, G and H, three sets of univaruate 
functions with intervals domains U, V and W, 
repesctively.

F = 𝑓𝑖(𝑢) 𝑖 = 0, 𝑚, G = 𝑔𝑗(𝑣) 𝑗 = 0, 𝑛
and 

H = ℎ𝑘(𝑤) 𝑘 = 0, 𝑙 .

A volume formed by 

𝑇 𝑢, 𝑣, 𝑤 = ෍

𝑖

෍

𝑗

෍

𝑘

𝑃𝑖,𝑗,𝑘𝐵𝑖(𝑢)𝐵𝑗(𝑣)𝐵𝑘(𝑤)

is called a trivariate tensor product with domain 
𝑈 × 𝑉 × 𝑊.

2

𝑢

𝑣

𝑤



Iso-Parametric Surface/Curve

 The Iso-Parametric Surface is evaluated with a fixed 
value of w .

For 𝑖 = 0, . . , 𝑚 and 𝑗 = 0,… , 𝑛, let 𝛾𝑖,𝑗 = σ𝑘 𝑃𝑖,𝑗,𝑘𝐵𝑘(෥𝑤).

Then:

S u, v = 𝑇 𝑢, 𝑣, ෥𝑤 = σ𝑖σ𝑗 𝛾𝑖,𝑗𝐵𝑖(𝑢)𝐵𝑗(𝑣),

is an iso-parametric surface of T, which is just a bivariate 
tensor product surface.

 The Iso-Parametric Curve with fixed values of w and v.

For i = 0, . . , 𝑚, let 𝜎𝑖 = σ𝑗σ𝑘 𝑃𝑖,𝑗,𝑘𝐵𝑘(෥𝑤)𝐵𝑗( ෤𝑣).

Then:

𝐶 𝑢 = 𝑇 𝑢, ෤𝑣, ෥𝑤 = σ𝑖 𝜎𝑖 𝐵𝑖 𝑢 .
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A trivariate 𝑇 𝑢, 𝑣, 𝑤 with 

isoparametric surfaces:

a) 𝑠 𝑢,𝑤 = 𝑇(𝑢, 𝑣0, 𝑤).

b) 𝑠 𝑣, 𝑤 = 𝑇(𝑢0, 𝑣, 𝑤).

c) 𝑠 𝑢, 𝑣 = 𝑇(𝑢, 𝑣, 𝑤0).4
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Partial Derivatives

Let 𝑇 be 𝑇 𝑢, 𝑣, 𝑤 : ℝ3 → ℝ𝑑 , d ≥ 3.

The gradient vector ∇𝑇 is called the Jacobian matrix of size 

𝑑 × 3:

∇𝑇 =
𝜕𝑇

𝜕𝑢
,
𝜕𝑇

𝜕𝑣
,
𝜕𝑇

𝜕𝑤
=

෍

𝑖

෍

𝑗

෍

𝑘

𝑃𝑖,𝑗,𝑘 ሗ𝐵𝑖(𝑢)𝐵𝑗(𝑣)𝐵𝑘(𝑤) ,

෍

𝑖

෍

𝑗

෍

𝑘

𝑃𝑖,𝑗,𝑘𝐵𝑖 𝑢 ሗ𝐵𝑗 𝑣 𝐵𝑘 𝑤 ,

෍

𝑖

෍

𝑗

෍

𝑘

𝑃𝑖,𝑗,𝑘𝐵𝑖(𝑢)𝐵𝑗(𝑣) ሗ𝐵𝑘𝑤) ,

𝑇

.
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Traditional

Constructors

Traditional surface constructors 

such as extrusion, ruled surfaces, 

surfaces of revolution, and/or 

sweep surfaces can be extended 

to construct trivariate functions.
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Extruded Volume

An Extruded Volume is a surface 

crossed with a line. Let 𝜎 𝑢, 𝑣 and 

𝑉 be a parametric spline surface 

and a unit vector, respectively. 

Then

Τ 𝑢, 𝑣, 𝑤 = 𝜎 𝑢, 𝑣 + 𝑤𝑉,

represent the volume extruded 

by surface 𝜎 𝑢, 𝑣 as the surface is 

moved in direction V.
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Ruled Volume

Let 𝜎1 𝑢, 𝑣 and 𝜎2 𝑢, 𝑣 be two parametric 

spline surfaces in the same space, that is, 

the same order and knot sequences. Then, 

the trivariate:

Τ 𝑢, 𝑣, 𝑤 = 1 − 𝑤 𝜎1 𝑢, 𝑣 + 𝑤𝜎2 𝑢, 𝑣 ,

constructs a ruled volume between 𝜎1 and 

𝜎2. If 𝜎1 𝑢, 𝑣 and 𝜎2 𝑢, 𝑣 do not share the 

same function subspace, they both could 

be elevated into one by raising the 

degrees of the lower degree surface.
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 Volume of revolution: Given a 

surface 𝑆(𝑢, 𝑣), a trivariate of 

revolution 𝑇(𝑢, 𝑣, 𝑤) is constructed 

by rotating 𝑆 around some axis 𝑉.

 Volumetric sweep: A trivariate 𝑇 is 

generated that interpolates or 

approximates a given ordered list 

of surfaces, 𝑆𝑖(u, v), at different 𝑤𝑖

parameters, 𝑤𝑖 ∈ [0, 1].
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Volumetric Representation

(V-Reps)

The framework is designed to 

support anticipated AM and IGA 

needs, which means it should 

support different queries on V-rep 

models such as slicing (intersection 

with a plane), (point) inclusion, 

geometrical neighborhood 

information and contacts, local 

refinements and more.

Based on Elber and Massarwi paper [2]. 
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V-Reps (Cont.)

 A V-model is a complex of several volumetric cells (V-cells).

 The V-cell is a volumetric cell represented by a trimmed B-spline
trivariate:

𝑇 𝑢, 𝑣, 𝑤 = σ𝑖σ𝑗σ𝑘𝑃𝑖,𝑗,𝑘𝐵𝑖(𝑢)𝐵𝑗(𝑣)𝐵𝑘(𝑤)

where 𝑃𝑖,𝑗,𝑘𝜖ℛ
𝔮, 𝖖 ≥ 𝟑 where the first three coordinates always represent 

the geometry but optionally also additional attributes, such as a color
or a stress tensor field, for 𝔮 ≥ 3.

 The B-spline trivariate is our basic building block that defines a volume. 
However, it is limited to a cuboid topology, and cannot represent 
general volumetric shapes. 

 The trimming of a V-cell is prescribed by a set of trimming (bivariate) B-
spline surfaces in the domain of the trivariate. Each such trimming 
surface is, in turn, possibly trimmed by trimming B-spline curves
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V-Reps (Cont.)

 Definition 3.2:

A V-rep cell (V-cell) is a 3-manifold that is in the intersection of 
one or more B-spline tensor product trivariates. The sub-domain 
of the intersection is delineated by trimming surfaces.

 Definition 3.3:

A V-model is a complex of one or more (mutually exclusive) V-
cells. Adjacent V-cells possibly share boundary (trimming) 
surfaces, curves or points.
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Union Operation between V-Reps

𝑂1 and 𝑂2 are V-model, and the union between 

them will resulting three V-cells 𝐴, 𝐵 and 𝐶.

What about continuity of attribute fields?
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Union Operation (Cont.)

+ =

What happen to the attribute fields in this transition region?14



Material Heterogeneity

 Let 𝑉𝑀 = 𝑉𝑀
1 ∪ 𝑉𝑀

2 , be some V-model that is the result of a Boolean union 
operation between V-models 𝑉𝑀

1 and 𝑉𝑀
2 .

 For simplicity, lets assume each of 𝑉𝑀
1 and 𝑉𝑀

2 contains one V-cell only.

 Let 𝒑 be a point in 𝑉𝑀, and let 𝒅(𝒑,𝑶) denote the minimal distance from 
𝒑 to object 𝑶, 𝒅 is a 𝐶0 continuous function.

 Let 𝐴1(𝑝) and 𝐴2(𝑝) be some 𝐶0 attribute fields of models 𝑉𝑀
1 and 𝑉𝑀

2 , 
respectively, at 𝑝, and finally, let 𝑑𝑖2

𝑏1 = 𝑑(𝑝, 𝜕𝑉𝑀
1 ∩ 𝑉𝑀

2) denote the 
distance from the boundary of 𝑉𝑀

1 , 𝜕𝑉𝑀
1 , that is inside 𝑉𝑀

2 from point 𝑝.
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 Then, the attribute value of model 𝑉𝑀 , 𝐴(𝑝), 
at 𝑝 can be calculated as the blend of 𝐴1(𝑝)
and 𝐴2(𝑝) as follows:

𝐴 𝑝 =

𝑑𝑖2
𝑏1𝐴1 𝑝 + 𝑑𝑖1

𝑏2𝐴2(𝑝)

𝑑𝑖2
𝑏1 𝑝 + 𝑑𝑖1

𝑏2(𝑝)
, 𝑝 𝜖 𝑉𝑀

1 ∩ 𝑉𝑀
2 ,

𝐴1 𝑝 , 𝑝 𝜖 𝑉𝑀
1 𝑎𝑛𝑑 𝑝 ∉ 𝑉𝑀

2 ,

𝐴2 𝑝 , 𝑝 𝜖 𝑉𝑀
2 𝑎𝑛𝑑 𝑝 ∉ 𝑉𝑀

1 ,

 Points where both 𝑑𝑖2
𝑏1 𝑝 and 𝑑𝑖1

𝑏2 𝑝 vanish 

simultaneously, called singular location.
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Construction of Micro-structures via 

Functional Composition

17

Based on Elber Paper [3]. 



Construction of Micro-structures (Cont.)

 Based on Elber method [3] to build precise construction 

of micro-structures using functional composition. In that 

approach, the designs of the macro-shape 𝓣 and the 

micro-structures 𝓜of a porous geometry are 

decoupled.

𝓜

𝓣

+ =
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 A parametric form of a (typically periodic) micro-tile 𝓜
is specified as some combination of curves, surfaces, 

and/or trivariates while the macro-shape 𝓣 is also 

specified as a parametric trivariate function 𝒯:𝐷 ∈ ℝ3 →
ℝ3.

Construction of Micro-structures (Cont.)

Curve

Trivariate

Surface

ℳ

19



Our input set is:

 A micro-tile ℳ, as some combination of parametric curves 𝐶 𝑡 =
(𝑐𝑥 𝑡 , 𝑐𝑦 𝑡 , 𝑐𝑧 𝑡 ), surfaces 𝑆 𝑢, 𝑣 = (𝑠𝑥 𝑢, 𝑣 , 𝑠𝑦 𝑢, 𝑣 , 𝑠𝑧 𝑢, 𝑣 ) and 

trivariates 𝑇 𝑢, 𝑣, 𝑤 = (𝑡𝑥 𝑢, 𝑣, 𝑤 , 𝑡𝑦 𝑢, 𝑣, 𝑤 , 𝑡𝑧 𝑢, 𝑣, 𝑤 ). ℳ is typically 

periodic in the sense that the 𝑑𝑚𝑖𝑛 faces are 𝐶0- continuous with 

respect to 𝑑𝑚𝑎𝑥, 𝑑 = 𝑥, 𝑦, 𝑧, and may even be 𝐶𝑘- continuous, 𝑘 > 0.

 A trivariate parametric deformation macro-function 𝒯 𝑥, 𝑦, 𝑧 : 𝐷 ∈
ℝ3 → ℝ3.

 (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧): the dimensions of enumerations in 𝒯, in 𝑥, 𝑦, 𝑧 of the 

micro-tile ℳ.

Construction of Micro-structures (Cont.)
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 Pave the micro-tile ℳ in the domain 𝐷 (of 𝒯), 𝑛𝑥, 𝑛𝑦, 𝑛𝑧
times.

Construction of Micro-structures (Cont.)

First Step

ℳ

𝒟

The micro-tile ℳ paved in 𝒟 3, 3, 3 times.
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 Functionally composing the tiling 𝑀𝑖,𝑗,𝑘 , into the 

deformation map 𝒯, to obtain the required micro-
structure 𝒯(𝑀𝑖,𝑗,𝑘).

Construction of Micro-structures (Cont.)

Second Step

𝒯 𝒯(𝑀)
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 Let 𝒯 be a trivariate vector function:

𝒯 𝑢, 𝑣, 𝑤 = ෍

𝑖

෍

𝑗

෍

𝑘

𝑃𝑖,𝑗,𝑘𝐵𝑖(𝑢)𝐵𝑗(𝑣)𝐵𝑘(𝑤)

 And the micro-shape trivaiate tile 𝑀 is:

M 𝑢, 𝑣, 𝑤 = ෍

𝑖

෍

𝑗

෍

𝑘

𝑄𝑖,𝑗,𝑘𝐵𝑖(𝑢)𝐵𝑗(𝑣)𝐵𝑘(𝑤)

 Then, the microstructure can be build using function 

composition:

෨𝑇 = 𝒯 𝑀 = 𝒯(𝑚𝑥 𝑢, 𝑣, 𝑤 , 𝑚𝑦 𝑢, 𝑣, 𝑤 , 𝑚𝑧 𝑢, 𝑣, 𝑤 )

Construction of Micro-structures (Cont.)

Functional Composing details23



Additive Manufacturing

24

Based on Ezair and  Elber paper [4]. 



Additive Manufacturing (Cont.)

Five V-cells Composed 

to one V-rep

The fabricated 

graded-materials 

(FGM) object.
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We apply the standard 

AM approach of 

slicing, to convert the 

above representation 

of an FGM object to a 

set of instructions that 

can be used to 

manufacture the 

object using AM.

Additive Manufacturing (Cont.)

26



Additive Manufacturing (Cont.)

The V-rep model is 

intersected with a 

plane.

The planar outline for 

the slice.

The planar Slice is 

filled with color coded 

material information. 
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Printing Pipline:

I. Intersect the V-rep model with a plane (at a given z 

height), to get a ’slice’.

II. This slice is then filled with material information by 

evaluating and specify the material composition at 

every point inside the slice. Then can be used by the 

printer to manufacture that slice.

Additive Manufacturing (Cont.)

How we can evaluate the 

material composotion on each 

point inside the ‘slice’ ?
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Additive Manufacturing (Cont.)

Point Evaluation

When slicing an FGM object, the only information available 
for a point is its position in Euclidean space.

The location for each 

point 𝑝 is (𝑥, 𝑦, Ƹ𝑧), in the 

eculidean space. (the 

z coordinate is fixed for 

all points in the slice).

But the geometry and material composition functions of the V-rep 
are over the Parametric domain.
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Given a Euclidean point (𝑥, 𝑦, Ƹ𝑧), consider the following system of three 

(often non-linear piecewise polynomial) constraints and three 

unknowns (𝑢, 𝑣, 𝑤):

൞

𝑥 = 𝑣𝑥 𝑢, 𝑣, 𝑤

𝑦 = 𝑣𝑦 𝑢, 𝑣, 𝑤

𝑦 = 𝑣𝑦 𝑢, 𝑣, 𝑤

, (1)

It’s a classical inverse problem, that can be solved using a subdivision 

based multivariate solvers.

Additive Manufacturing (Cont.)

Point Evaluation

30

We can solve this equation for each point, 

for billion of times. It is not efficient!



Lemma: 

The solution for the system of constraints presented in Equation (1), 

(𝑢0, 𝑣0,𝑤0), exists and is unique for every point (𝑥0, 𝑦0, 𝑧0) inside a 

self intersection free and regular volume 𝑉(𝑢, 𝑣, 𝑤).

Proof: 

The uniqueness of the solutions to Equation (1) follows directly from 

our assumption of 𝑉(𝑢, 𝑣, 𝑤) being regular and without (global) self 

intersections.

Additive Manufacturing (Cont.)

Point Evaluation31

For each point (𝑥0, 𝑦0, 𝑧0)
inside the outline of the 

objcet have a un unique 

solution.



 To efficiently classify points as inside or outside the model, we use 

the outline of the current slice.

Given the outline, we aim to sample and generate material 

composition information only for the pixels that are found inside 

the outline of the slice. 

We use a simple rasterization strategy of sampling along straight 

lines aligned to the y axis.

32

Additive Manufacturing (Cont.)

Point Evaluation



Sampling along lines allows us to use two optimizations:

I. To determine if we are inside/outside the outline, we 

first find the intersections between the outline and our 

sampling line.
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Additive Manufacturing (Cont.)

Point Evaluation

Using this optimization to determine if a sample point is inside or 

outside the current slice saves us from unnecessarily attempting 

to solve Equation (1) for points outside the current slice.



II. From the previous lemma we already know that a 

unique solution exists if the Euclidean point is inside.

34

Additive Manufacturing (Cont.)

Point Evaluation

 This fact allows us to optimize our use of the multivariate 

solver to solve equation (1).

Once we use the full solver to get the solution for a point, 

the solution for any other close-by point can be 

attempted by employing a numeric tracing (i.e. a 

Newton–Raphson iteration method), using the previous 

solution for any close-by point as an initial guess.
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