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What are Mechanical Linkages?

• Assemblies of rigid bodies (links) 
connected by joints.


• Purpose: Transforming motion and 
forces 

Oil wel pump-jack



Why are Linkages Important?
• Everywhere in Engineering & Daily life:


• Automotive (wipers, engines)


• Robotics (grippers, walking robots)


• Industrial Machinery (packaging)


• Consumer Products (sewing machines, toys)



Why are Linkages Important?
• Fundamental to Motion Design:


• Motion Generation: Controlling the movement of all links.


• Path Generation: Tracing specific desired curves (straight lines, complex 
coupler curves).


• Function Generation: Mapping an input motion to a desired output motion 
(a specific speed change).


• Legacy & Modern Relevance: A centuries-old field, but still active research 
due to increasing demands for precision and complexity.



Describing Linkage Motion
• Linkage motion is inherently non-linear and 

complex


• Traditional methods often struggle with:


• Multiple possible configurations


• Singularities


• Tracing continuous motion paths robustly

Example of Klann linkage- which is  a planar mechanism designed to  
simulate the walk of a legged animal and function as a  

wheel replacement, a leg mechanism



The Presented Approach
• Formulating motion as Algebraic Constraints


• Transforming geometry into a system of polynomial equations


• Leveraging computational geometry and specialized solvers (e.g., spline 
based) for robust analysis and design 



Mapping Motion to Algebraic Constraints
• Goal: Translate physical geometry into mathematical equations


•  Links: Rigid bodies with fixed lengths


•  fixed ground joints


•  moving joints


• Motion is described by changes in joint coordinates
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Subdivision-Based Solvers
• van-Sosin & Elber 2016: Systematically explore the entire solution space


• Recursive subdivision:


• Divide the unknown’s domain into smaller sub-regions


• Test each sub-region for the potential presence of a solution


• Discard regions guaranteed not to contain solution 


• Recursively subdivide promising regions until desired accuracy is met


• Guaranteed Global Search: ensures all real solutions are found within the 
specified domain


• Robustness: less sensitive to singularities and complex solution landscapes



Complexity- some motivation
• Subdivision solvers scale exponentially with number of variables - k


• The complexity without decomposition 


• The complexity with decomposition into d subsystems 


Where c is the average subdivisions per variable

≈ ck

≈ d ⋅ c
k
d



Directed Graphs
• A directed graph is a set of vertices connected by oriented edges


• Represented as , where 


• Allowed cycles, paths and direction-based dependencies

G = (V, E) E ⊆ V × V



Bipartite Graph
• A graph  is bipartite if its vertex set 

V can be divided into two disjointed sets  
and  such that: 





• No edges within  or within 


• Edges are undirected 


• Often used to model constraint systems

G = (V, E)
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Maximum Matching 
• Given a graph :


• A matching is a set of edges without 
common vertices


• A maximum matching is a matching 
with the largest possible number of 
edges 


• An algorithm that finds maximum 
matching in a bipartite graph is 
Hopcroft-Karp - with time complexity of 

G = (V, E)
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Strongly Connected Component
• An SCC is a maximal subgraph in which every vertex is reachable from every 

other vertex 


• SCCs partition the directed graph


• Useful for solving decomposed systems independently



B-Spline Property: The Convex Hull
• A B-Spline curve is always contained 

entirely within the convex hull of its control 
points.


• The control points form a ‘control polygon’


• The convex hull is the shape enclosing all 
control points


• The resulting curve will never leave this 
bounding shape


This property makes the curve’s behavior 
predictable and is fundamental for many 
algorithms 



The Algorithm 
• Constructing a variable constraint graph ( ) that represents the zero 

constraints of the problem -  vertex for each variable,  vertex for each 
constraint.  


• Decomposition into subsystems


• Finding maximum matching in the graph 


• Building a new directed graph 
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The Algorithm cont.
• Decomposition into subsystems


• Finding maximum matching in the graph 


• Building a new directed graph 


• Condensing the dependency graph (G’) into a new graph H constructed by 
the set of all constraint vertices of G’


• Construct SCC of graph H


• Adding inequality constraints to each sub-system
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Algebraic Representation of the example
• For   and 


•

P0 = (−1,0), P1 = (1,0) c0 = 0.9,c1 = 2.5,c2 = 2,c3 = 0.9

|A − P0|2 − c2
0 = 0

|A − P1|2 − c2
1 = 0

|A − B|2 − c2
2 = 0

|B − P1|2 − c2
3 = 0
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Example cont.

•
Equality constraints: 


• Inequality constraints: 

|A − P0|2 − c2
0 = 0

|A − P1|2 − c2
1 = 0

|A − B|2 − c2
2 = 0

|B − P1|2 − c2
3 = 0

{
Ay ≥ 0
z((B − P1) × (A − P1)) ≥ 0
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Example 2
The goal: Embed a 2D engraving curve onto the surface of a teapot.


• The teapot is the Utah teapot- represented as a surface 


• The engraving is a planar curve 


• The embedding of the engraving onto the surface is done by functional 
composition:  

S(u, v)

c(t)

cS(t) = S(c(t))



Example 2 cont.

•
The constraints: 


• Lets denote the constraints 

|cS(t) − B|2 − L2
3 = 0

⟨Su(c(t)), B − cS(t)⟩ = 0

⟨Sv(c(t)), B − cS(t)⟩ = 0

|B − A|2 − L2
2 = 0

|A − P0|2 − L2
1 = 0

z((B − A) × (P0 − A)) = 0

c0 . . . c5



The Algorithm in Context
• This is the bipartite graph of the teapot 

example- continuing this will lead us to 
the solution path
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How it all connects…
• Any polynomial can be exactly represented as a multivariate B-spline


• The solver performs this conversion automatically behind the scenes - we 
don’t input control points or knots!


• The method combines smart, graph-based decomposition with a guaranteed 
subdivision solver


• This approach makes it possible to solve previously intractable geometric 
problems


• The solver’s efficiency comes from the convex hull property of B-splines


