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Kinematics of Linkages and
Algebraic Constraints
A simulation of a Crank-Rocker 4-Bar Linkage
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What are Mechanical Linkages?

* Assemblies of rigid bodies (links)
connected by joints.

 Purpose: Transforming motion and
forces

Oil wel pump-jack




Why are Linkages Important?

 Everywhere in Engineering & Dally life:
* Automotive (wipers, engines)
* Robotics (grippers, walking robots)
* |ndustrial Machinery (packaging)

 Consumer Products (sewing machines, toys)



Why are Linkages Important?

 Fundamental to Motion Design:
* Motion Generation: Controlling the movement of all links.

 Path Generation: Tracing specific desired curves (straight lines, complex
coupler curves).

* Function Generation: Mapping an input motion to a desired output motion
(a specific speed change).

| egacy & Modern Relevance: A centuries-old field, but still active research
due to increasing demands for precision and complexity.



Describing Linkage Motion

* Linkage motion is inherently non-linear and
complex

* TJraditional methods often struggle with:
 Multiple possible configurations
» Singularities

* [racing continuous motion paths robustly

Example of Klann linkage- which is a planar mechanism designed to
simulate the walk of a legged animal and function as a
wheel replacement, a leg mechanism



The Presented Approach

e Formulating motion as Algebraic Constraints
e Jransforming geometry into a system of polynomial equations

e |everaging computational geometry and specialized solvers (e.g., spline
based) for robust analysis and design



Mapping Motion to Algebraic Constraints

 (Goal: Translate physical geometry into mathematical equations
e (cp, 1, Cy, C3) Links: Rigid bodies with fixed lengths

e« Py, P fixed ground joints

- A= (A, Ay),B = (B,, By) moving joints

 Motion is described by changes in joint coordinates




Subdivision-Based Solvers

* van-Sosin & Elber 2016: Systematically explore the entire solution space
* Recursive subdivision:

* Divide the unknown’s domain into smaller sub-regions

* Jest each sub-region for the potential presence of a solution

* Discard regions guaranteed not to contain solution

* Recursively subdivide promising regions until desired accuracy is met

« Guaranteed Global Search: ensures all real solutions are found within the
specified domain

 Robustness: less sensitive to singularities and complex solution landscapes



Complexity- some motivation

» Subdivision solvers scale exponentially with number of variables - k

 [he complexity without decomposition =~ ct

k
» The complexity with decomposition into d subsystems =~ d - ¢

Where c is the average subdivisions per variable



Directed Graphs

* A directed graph is a set of vertices connected by oriented edges

e Representedas G = (V,E), where EC VXV

* Allowed cycles, paths and direction-based dependencies



Bipartite Graph

« Agraph G = (V, E) is bipartite if its vertex set
V can be divided into two disjointed sets U
and W such that:

EC{(uw)|lueUwe W)

» No edges within U or within W
* Edges are undirected

» Often used to model constraint systems



Maximum Matching
» Givenagraph G = (V, E):

A matching is a set of edges without
common vertices

A maximum matching is a matching

with the largest possible number of
edges

* An algorithm that finds maximum
matching in a bipartite graph is
Hopcroft-Karp - with time complexity of

O(E\/ V)




Strongly Connected Component

 An SCC is a maximal subgraph in which every vertex is reachable from every
other vertex

 SCCs partition the directed graph

» Useful for solving decomposed systems independently
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B-Spline Property: The Convex Hull

* A B-Spline curve is always contained
entirely within the convex hull of its control
points.

* The control points form a ‘control polygon’

 The convex hull is the shape enclosing all
control points

* [he resulting curve will never leave this
bounding shape

This property makes the curve’s behavior
predictable and is fundamental for many
algorithms



The Algorithm

» Constructing a variable constraint graph ((G) that represents the zero
constraints of the problem - V|, vertex for each variable, V), vertex for each

constraint. .

 Decomposition into subsystems

» Finding maximum matching in the graph G

 Building a new directed graph G’
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The Algorithm cont.

 Decomposition into subsystems

Finding maximum matching in the graph G

Building a new directed graph G’
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Graph H

Condensing the dependency graph (G’) into a new graph H constructed by

the set of all constraint vertices of G’

Construct SCC of graph H

Adding inequality constraints to each sub-system




Algebraic Representation of the example
» For Py =(—1,0),P;, =(1,0) and ¢y, =0.9,c; =2.5,¢c, =2,c;, = 0.9

A= Py|*—cy=0
A= P> —ci =0
A—B|*—c5=0
[B—Py|*—c5=0




Example cont.
A= Pyl*—c5 =0
A= P|°=c{=0
A—B|>?—c3=0
B—P||°~c;=0
A, 20
A(B=P)XA=P)) 20

Equality constraints:

Inequality constraints: {




Example 2

The goal: Embed a 2D engraving curve onto the surface of a teapot.
« The teapot is the Utah teapot- represented as a surface S(u, v)

» The engraving is a planar curve c(7)

 The embedding of the engraving onto the surface is done by functional

composition: ¢g(?) = S(c(?))
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Example 2 cont.

le(t) = B> =L =0
<Su(c(t)), B - CS(t)>

0

The constraints: <Sv<c(t)),B - cs(t)> 0

|B—A|>?-L{=0
A — Py|* =L =0
2(B—A)X (Py—A) =0

e | ets denote the constraints ¢, ...




The Algorithm in Context

* This iIs the bipartite graph of the teapot
example- continuing this will lead us to
the solution path




How It all connects...

* Any polynomial can be exactly represented as a multivariate B-spline

* The solver performs this conversion automatically behind the scenes - we
don’t input control points or knots!

 [The method combines smart, graph-based decomposition with a guaranteed
subdivision solver

* [his approach makes it possible to solve previously intractable geometric
problems

* The solver’s efficiency comes from the convex hull property of B-splines



