
Tamar Neter, 07.07.2025

Kinematics of Linkages and
Algebraic Constraints

A simulation of a Crank-Rocker 4-Bar Linkage

Kinematics of Linkages and
Algebraic Constraints

2

What are Mechanical Linkages?

• Assemblies of rigid bodies (links)
connected by joints.

• Purpose: Transforming motion and
forces

Oil wel pump-jack

Why are Linkages Important?
• Everywhere in Engineering & Daily life:

• Automotive (wipers, engines)

• Robotics (grippers, walking robots)

• Industrial Machinery (packaging)

• Consumer Products (sewing machines, toys)

Why are Linkages Important?
• Fundamental to Motion Design:

• Motion Generation: Controlling the movement of all links.

• Path Generation: Tracing specific desired curves (straight lines, complex
coupler curves).

• Function Generation: Mapping an input motion to a desired output motion
(a specific speed change).

• Legacy & Modern Relevance: A centuries-old field, but still active research
due to increasing demands for precision and complexity.

Describing Linkage Motion
• Linkage motion is inherently non-linear and

complex

• Traditional methods often struggle with:

• Multiple possible configurations

• Singularities

• Tracing continuous motion paths robustly

Example of Klann linkage- which is a planar mechanism designed to
simulate the walk of a legged animal and function as a

wheel replacement, a leg mechanism

The Presented Approach
• Formulating motion as Algebraic Constraints

• Transforming geometry into a system of polynomial equations

• Leveraging computational geometry and specialized solvers (e.g., spline
based) for robust analysis and design

Mapping Motion to Algebraic Constraints
• Goal: Translate physical geometry into mathematical equations

• Links: Rigid bodies with fixed lengths

• fixed ground joints

• moving joints

• Motion is described by changes in joint coordinates

(c0, c1, c2, c3)

P0, P1

A = (Ax, Ay), B = (Bx, By)

 P0 P1

A B
c0 c1 c3

c2

Ax Ay ByBx

c0 c1 c2 c3

Vv

VM

Subdivision-Based Solvers
• van-Sosin & Elber 2016: Systematically explore the entire solution space

• Recursive subdivision:

• Divide the unknown’s domain into smaller sub-regions

• Test each sub-region for the potential presence of a solution

• Discard regions guaranteed not to contain solution

• Recursively subdivide promising regions until desired accuracy is met

• Guaranteed Global Search: ensures all real solutions are found within the
specified domain

• Robustness: less sensitive to singularities and complex solution landscapes

Complexity- some motivation
• Subdivision solvers scale exponentially with number of variables - k

• The complexity without decomposition

• The complexity with decomposition into d subsystems

Where c is the average subdivisions per variable

≈ ck

≈ d ⋅ c
k
d

Directed Graphs
• A directed graph is a set of vertices connected by oriented edges

• Represented as , where

• Allowed cycles, paths and direction-based dependencies

G = (V, E) E ⊆ V × V

Bipartite Graph
• A graph is bipartite if its vertex set

V can be divided into two disjointed sets
and such that:

• No edges within or within

• Edges are undirected

• Often used to model constraint systems

G = (V, E)
U

W

E ⊆ {(u, w) |u ∈ U, w ∈ W}

U W

A

B

C

D

1

2

3

4

5

Maximum Matching
• Given a graph :

• A matching is a set of edges without
common vertices

• A maximum matching is a matching
with the largest possible number of
edges

• An algorithm that finds maximum
matching in a bipartite graph is
Hopcroft-Karp - with time complexity of

G = (V, E)

O(E V)

A

B

C

D

1

2

3

4

5

Strongly Connected Component
• An SCC is a maximal subgraph in which every vertex is reachable from every

other vertex

• SCCs partition the directed graph

• Useful for solving decomposed systems independently

B-Spline Property: The Convex Hull
• A B-Spline curve is always contained

entirely within the convex hull of its control
points.

• The control points form a ‘control polygon’

• The convex hull is the shape enclosing all
control points

• The resulting curve will never leave this
bounding shape

This property makes the curve’s behavior
predictable and is fundamental for many
algorithms

The Algorithm
• Constructing a variable constraint graph () that represents the zero

constraints of the problem - vertex for each variable, vertex for each
constraint.

• Decomposition into subsystems

• Finding maximum matching in the graph

• Building a new directed graph

G
Vv VM

G

G′

 P0 P1

A B
c0 c1 c3

c2

Ax Ay ByBx

c0 c1 c2 c3

Vv

VM

Graph G

Ax Ay ByBx

c0 c1 c2 c3

Vv

VM

Maximum
matching

Ax Ay ByBx

c0 c1 c2 c3

Vv

VM

G’

The Algorithm cont.
• Decomposition into subsystems

• Finding maximum matching in the graph

• Building a new directed graph

• Condensing the dependency graph (G’) into a new graph H constructed by
the set of all constraint vertices of G’

• Construct SCC of graph H

• Adding inequality constraints to each sub-system

G

G′

c0 c1 c2 c3

Graph H

c0 c1 c2 c3

SCCs of H

Algebraic Representation of the example
• For and

•

P0 = (−1,0), P1 = (1,0) c0 = 0.9,c1 = 2.5,c2 = 2,c3 = 0.9

|A − P0|2 − c2
0 = 0

|A − P1|2 − c2
1 = 0

|A − B|2 − c2
2 = 0

|B − P1|2 − c2
3 = 0

 P0 P1

A B
c0 c1 c3

c2

 P0 P1

A B

 P0 P1

A

B

 P0 P1

A

B

Example cont.

•
Equality constraints:

• Inequality constraints:

|A − P0|2 − c2
0 = 0

|A − P1|2 − c2
1 = 0

|A − B|2 − c2
2 = 0

|B − P1|2 − c2
3 = 0

{
Ay ≥ 0
z((B − P1) × (A − P1)) ≥ 0

 P0 P1

A B
c0 c1 c3

c2

Example 2
The goal: Embed a 2D engraving curve onto the surface of a teapot.

• The teapot is the Utah teapot- represented as a surface

• The engraving is a planar curve

• The embedding of the engraving onto the surface is done by functional
composition:

S(u, v)

c(t)

cS(t) = S(c(t))

Example 2 cont.

•
The constraints:

• Lets denote the constraints

|cS(t) − B|2 − L2
3 = 0

⟨Su(c(t)), B − cS(t)⟩ = 0

⟨Sv(c(t)), B − cS(t)⟩ = 0

|B − A|2 − L2
2 = 0

|A − P0|2 − L2
1 = 0

z((B − A) × (P0 − A)) = 0

c0 . . . c5

The Algorithm in Context
• This is the bipartite graph of the teapot

example- continuing this will lead us to
the solution path

Ax Ay ByBx

c0 c1 c2 c3

Vv

VM

Az Bz t

c4 c5

How it all connects…
• Any polynomial can be exactly represented as a multivariate B-spline

• The solver performs this conversion automatically behind the scenes - we
don’t input control points or knots!

• The method combines smart, graph-based decomposition with a guaranteed
subdivision solver

• This approach makes it possible to solve previously intractable geometric
problems

• The solver’s efficiency comes from the convex hull property of B-splines

